A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://huggingface.co/docs/transformers/v4.51.3/en/model_doc/zamba below:

Website Navigation


Zamba

Zamba

Zamba is a large language model (LLM) trained by Zyphra, and made available under an Apache 2.0 license. Please see the Zyphra Hugging Face repository for model weights.

This model was contributed by pglo.

Model details

Zamba-7B-v1 is a hybrid between state-space models (Specifically Mamba) and transformer, and was trained using next-token prediction. Zamba uses a shared transformer layer after every 6 mamba blocks. It uses the Mistral v0.1 tokenizer. We came to this architecture after a series of ablations at small scales. Zamba-7B-v1 was pre-trained on 1T tokens of text and code data.

Quick start Presequities

Zamba requires you use transformers version 4.46.0 or higher:

pip install transformers>=4.45.0

In order to run optimized Mamba implementations, you first need to install mamba-ssm and causal-conv1d:

pip install mamba-ssm causal-conv1d>=1.2.0

You also have to have the model on a CUDA device.

You can run the model not using the optimized Mamba kernels, but it is not recommended as it will result in significantly lower latencies. In order to do that, you’ll need to specify use_mamba_kernels=False when loading the model.

Inference
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba-7B-v1")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba-7B-v1", device_map="auto", torch_dtype=torch.bfloat16)

input_text = "A funny prompt would be "
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
Model card

The model cards can be found at:

Issues

For issues with model output, or community discussion, please use the Hugging Face community forum

License

The model weights are open-sourced via an Apache 2.0 license.

ZambaConfig class transformers.ZambaConfig < source >

( vocab_size = 32000 tie_word_embeddings = True hidden_size = 3712 attention_hidden_size = None intermediate_size = 14848 num_hidden_layers = 76 num_attention_heads = 16 attention_head_dim = None num_key_value_heads = 16 n_mamba_heads = 2 hidden_act = 'gelu' hidden_mamba_act = 'silu' initializer_range = 0.02 rms_norm_eps = 1e-05 use_cache = True num_logits_to_keep = 1 pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 max_position_embeddings = 4096 attention_dropout = 0.0 attn_layer_period = 6 attn_layer_offset = 4 use_mamba_kernels = True mamba_d_state = 16 mamba_d_conv = 4 mamba_expand = 2 mamba_dt_rank = 'auto' time_step_min = 0.001 time_step_max = 0.1 time_step_floor = 0.0001 mamba_conv_bias = True mamba_proj_bias = False **kwargs )

Parameters

This is the configuration class to store the configuration of a ZambaModel. It is used to instantiate a Zamba model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Zamba-v0.1 model.

Zyphra/Zamba-7B-v1

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

ZambaModel class transformers.ZambaModel < source >

( config: ZambaConfig )

Parameters

The bare Zamba Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a ZambaDecoderLayer

forward < source >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.models.zamba.modeling_zamba.ZambaHybridDynamicCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None )

Parameters

The ZambaModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

ZambaForCausalLM class transformers.ZambaForCausalLM < source >

( config: ZambaConfig )

forward < source >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.models.zamba.modeling_zamba.ZambaHybridDynamicCache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None logits_to_keep: typing.Union[int, torch.Tensor] = 0 **loss_kwargs ) transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

Parameters

A transformers.modeling_outputs.CausalLMOutputWithPast or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (ZambaConfig) and inputs.

The ZambaForCausalLM forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoTokenizer, ZambaForCausalLM

>>> model = ZambaForCausalLM.from_pretrained("Zyphra/Zamba-7B-v1")
>>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba-7B-v1")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> 
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
ZambaForSequenceClassification class transformers.ZambaForSequenceClassification < source >

( config )

Parameters

The Zamba Model with a sequence classification head on top (linear layer).

ZambaForSequenceClassification uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do.

Since it does classification on the last token, it requires to know the position of the last token. If a pad_token_id is defined in the configuration, it finds the last token that is not a padding token in each row. If no pad_token_id is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when inputs_embeds are passed instead of input_ids, it does the same (take the last value in each row of the batch).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < source >

( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.List[torch.FloatTensor], NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )

Parameters

The ZambaForSequenceClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

< > Update on GitHub

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.3