A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://huggingface.co/docs/transformers/v4.51.3/en/model_doc/nat below:

Website Navigation


Neighborhood Attention Transformer

Neighborhood Attention Transformer

This model is in maintenance mode only, we don’t accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2. You can do so by running the following command: pip install -U transformers==4.40.2.

Overview

NAT was proposed in Neighborhood Attention Transformer by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.

It is a hierarchical vision transformer based on Neighborhood Attention, a sliding-window self attention pattern.

The abstract from the paper is the following:

We present Neighborhood Attention (NA), the first efficient and scalable sliding-window attention mechanism for vision. NA is a pixel-wise operation, localizing self attention (SA) to the nearest neighboring pixels, and therefore enjoys a linear time and space complexity compared to the quadratic complexity of SA. The sliding-window pattern allows NA’s receptive field to grow without needing extra pixel shifts, and preserves translational equivariance, unlike Swin Transformer’s Window Self Attention (WSA). We develop NATTEN (Neighborhood Attention Extension), a Python package with efficient C++ and CUDA kernels, which allows NA to run up to 40% faster than Swin’s WSA while using up to 25% less memory. We further present Neighborhood Attention Transformer (NAT), a new hierarchical transformer design based on NA that boosts image classification and downstream vision performance. Experimental results on NAT are competitive; NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20K, which is 1.9% ImageNet accuracy, 1.0% COCO mAP, and 2.6% ADE20K mIoU improvement over a Swin model with similar size.

Neighborhood Attention compared to other attention patterns. Taken from the original paper.

This model was contributed by Ali Hassani. The original code can be found here.

Usage tips

Notes:

Resources

A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with NAT.

Image Classification

If you’re interested in submitting a resource to be included here, please feel free to open a Pull Request and we’ll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.

NatConfig class transformers.NatConfig < source >

( patch_size = 4 num_channels = 3 embed_dim = 64 depths = [3, 4, 6, 5] num_heads = [2, 4, 8, 16] kernel_size = 7 mlp_ratio = 3.0 qkv_bias = True hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 drop_path_rate = 0.1 hidden_act = 'gelu' initializer_range = 0.02 layer_norm_eps = 1e-05 layer_scale_init_value = 0.0 out_features = None out_indices = None **kwargs )

Parameters

This is the configuration class to store the configuration of a NatModel. It is used to instantiate a Nat model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nat shi-labs/nat-mini-in1k-224 architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import NatConfig, NatModel

>>> 
>>> configuration = NatConfig()

>>> 
>>> model = NatModel(configuration)

>>> 
>>> configuration = model.config
NatModel class transformers.NatModel < source >

( config add_pooling_layer = True )

Parameters

The bare Nat Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < source >

( pixel_values: typing.Optional[torch.FloatTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.deprecated.nat.modeling_nat.NatModelOutput or tuple(torch.FloatTensor)

Parameters

Returns

transformers.models.deprecated.nat.modeling_nat.NatModelOutput or tuple(torch.FloatTensor)

A transformers.models.deprecated.nat.modeling_nat.NatModelOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (NatConfig) and inputs.

The NatModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoImageProcessor, NatModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = NatModel.from_pretrained("shi-labs/nat-mini-in1k-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 7, 7, 512]
NatForImageClassification class transformers.NatForImageClassification < source >

( config )

Parameters

Nat Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < source >

( pixel_values: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) transformers.models.deprecated.nat.modeling_nat.NatImageClassifierOutput or tuple(torch.FloatTensor)

Parameters

Returns

transformers.models.deprecated.nat.modeling_nat.NatImageClassifierOutput or tuple(torch.FloatTensor)

A transformers.models.deprecated.nat.modeling_nat.NatImageClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (NatConfig) and inputs.

The NatForImageClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoImageProcessor, NatForImageClassification
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = NatForImageClassification.from_pretrained("shi-labs/nat-mini-in1k-224")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> 
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tiger cat
< > Update on GitHub

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4