๐
akhaliq/depth-pro
๐
A19grey/Depth-Pro-in-Meters
๐จ
cyun9286/Align3R
๐
oxkitsune/rerun-ml-depth-pro
๐
lightly-ai/ml-depth-pro
๐
ra-led/depth-pro-normalized
๐
huashenhuajia/depth-pro
๐
hamdouch/ml-depth-pro
We present a foundation model for zero-shot metric monocular depth estimation. Our model, Depth Pro, synthesizes high-resolution depth maps with unparalleled sharpness and high-frequency details. The predictions are metric, with absolute scale, without relying on the availability of metadata such as camera intrinsics. And the model is fast, producing a 2.25-megapixel depth map in 0.3 seconds on a standard GPU. These characteristics are enabled by a number of technical contributions, including an efficient multi-scale vision transformer for dense prediction, a training protocol that combines real and synthetic datasets to achieve high metric accuracy alongside fine boundary tracing, dedicated evaluation metrics for boundary accuracy in estimated depth maps, and state-of-the-art focal length estimation from a single image.
Depth Pro was introduced in Depth Pro: Sharp Monocular Metric Depth in Less Than a Second, by Aleksei Bochkovskii, Amaรซl Delaunoy, Hugo Germain, Marcel Santos, Yichao Zhou, Stephan R. Richter, and Vladlen Koltun.
The checkpoint in this repository is a reference implementation, which has been re-trained. Its performance is close to the model reported in the paper but does not match it exactly.
How to UsePlease, follow the steps in the code repository to set up your environment. Then you can download the checkpoint from the Files and versions tab above, or use the huggingface-hub
CLI:
pip install huggingface-hub
huggingface-cli download --local-dir checkpoints apple/DepthPro
Running from commandline
The code repo provides a helper script to run the model on a single image:
depth-pro-run -i ./data/example.jpg
Running from Python
from PIL import Image
import depth_pro
model, transform = depth_pro.create_model_and_transforms()
model.eval()
image, _, f_px = depth_pro.load_rgb(image_path)
image = transform(image)
prediction = model.infer(image, f_px=f_px)
depth = prediction["depth"]
focallength_px = prediction["focallength_px"]
Evaluation (boundary metrics)
Boundary metrics are implemented in eval/boundary_metrics.py
and can be used as follows:
boundary_f1 = SI_boundary_F1(predicted_depth, target_depth)
boundary_recall = SI_boundary_Recall(predicted_depth, target_mask)
Citation
If you find our work useful, please cite the following paper:
@article{Bochkovskii2024:arxiv,
author = {Aleksei Bochkovskii and Ama\"{e}l Delaunoy and Hugo Germain and Marcel Santos and
Yichao Zhou and Stephan R. Richter and Vladlen Koltun}
title = {Depth Pro: Sharp Monocular Metric Depth in Less Than a Second},
journal = {arXiv},
year = {2024},
}
Acknowledgements
Our codebase is built using multiple opensource contributions, please see Acknowledgements for more details.
Please check the paper for a complete list of references and datasets used in this work.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4