A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/zhiyuan-hu-lab/CIDER below:

zhiyuan-hu-lab/CIDER: CIDER: Meta-Clustering for scRNA-Seq Integration and Evaluation

CIDER is a meta-clustering workflow designed to handle scRNA-seq data that span multiple samples or conditions. Often, these datasets are confounded by batch effects or other variables. Many existing batch-removal methods assume near-identical cell population compositions across samples. CIDER, in contrast, leverages inter-group similarity measures to guide clustering without requiring such strict assumptions.

You can install CIDER from CRAN with

install.packages("CIDER")
#> Installing package into '/private/var/folders/z9/zcddb9jx5bz343w2nfzzc3500000gn/T/RtmpgJ8mzi/temp_libpathc41814577d56'
#> (as 'lib' is unspecified)
#> installing the source package 'CIDER'

or, alternatively, from our github with:

# install.packages("devtools")
devtools::install_github('zhiyuan-hu-lab/CIDER')
Quick Start: Using CIDER as an Evaluation Metric

If you have already integrated your scRNA-seq data (e.g., using Seurat-CCA, Harmony, or Scanorama) and want to evaluate how well the biological populations align post-integration, you can use CIDER as follows.

  1. Before running CIDER evaluation functions, make sure that you have a Seurat object (e.g. seu.integrated) with corrected PCs in
seu.integrated@reductions$pca@cell.embeddings`
seu.integrated@reductions$pca@cell.embeddings <- corrected.PCs
  1. Run hdbscan clustering (optional) and compute the IDER score:
library(CIDER)
seu.integrated <- hdbscan.seurat(seu.integrated)
ider <- getIDEr(seu.integrated, verbose = FALSE)
seu.integrated <- estimateProb(seu.integrated, ider)
  1. Visualize evaluation scores on t-SNE or UMAP:

The evaluation scores (IDER-based similarity and empirical p values) can be visualised by the scatterPlot function.

p1 <- scatterPlot(seu.integrated, "tsne", colour.by = "similarity")
p2 <- scatterPlot(seu.integrated, "tsne", colour.by = "pvalue") 
plot_grid(p1,p2, ncol = 2)

Evaluation scatterplot showing CIDER-based p-values and similarity

For a more detailed walkthrough, see the detailed tutorial of evaluation

Using CIDER for Clustering Tasks

In many scenarios, you do not start with an integrated Seurat object but still need to cluster multi-batch scRNA-seq data in a robust way. CIDER provides meta-clustering approaches:

If your Seurat object (seu) has:

then two main steps are:

# Step 1: Compute IDER-based similarity
ider <- getIDEr(seu, 
                group.by.var = "initial_cluster",
                batch.by.var = "Batch")

# Step 2: Perform final clustering
seu <- finalClustering(seu, ider, cutree.h = 0.45)

The final clusters will be stored in seu@meta.data$final_cluster (by default).

If you find CIDER helpful for your research, please cite:

Z. Hu, A. A. Ahmed, C. Yau. CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation. Genome Biology 22, Article number: 337 (2021); doi: https://doi.org/10.1186/s13059-021-02561-2

Z. Hu, M. Artibani, A. Alsaadi, N. Wietek, M. Morotti, T. Shi, Z. Zhong, L. Santana Gonzalez, S. El-Sahhar, M. KaramiNejadRanjbar, G. Mallett, Y. Feng, K. Masuda, Y. Zheng, K. Chong, S. Damato, S. Dhar, L. Campo, R. Garruto Campanile, V. Rai, D. Maldonado-Perez, S. Jones, V. Cerundolo, T. Sauka-Spengler, C. Yau*, A. A. Ahmed*. The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 37 (2), p226-242.E7 (2020). doi: https://doi.org/10.1101/2021.03.29.437525


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4