A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/zejiang-unsw/NPRED below:

zejiang-unsw/NPRED: Predictor identifier: Nonparametric PREDiction

Predictor Identifier: Nonparametric PREDiction (NPRED) Partial informational correlation (PIC) is used to identify the meaningful predictors to the response from a large set of potential predictors.

The initial version of NPRED is at Hydrology@UNSW. This is a new version of NPRED without calling Fortran codes.

Applications of this package can be found in:

You can install the package via devtools from GitHub with:

devtools::install_github("zejiang-unsw/NPRED")

or via CRAN with:

install.packages("NPRED")

Sharma, A., Mehrotra, R. (2014). An information theoretic alternative to model a natural system using observational information alone. Water Resources Research, 50(1): 650-660.

Galelli S., Humphrey G.B., Maier H.R., Castelletti A., Dandy G.C. and Gibbs M.S. (2014). An evaluation framework for input variable selection algorithms for environmental data-driven models, Environmental Modelling and Software, 62, 33-51.

Sharma, A., Mehrotra, R., Li, J., & Jha, S. (2016). A programming tool for nonparametric system prediction using Partial Informational Correlation and Partial Weights. Environmental Modelling & Software, 83, 271-275.

Mehrotra, R., & Sharma, A. (2006). Conditional resampling of hydrologic time series using multiple predictor variables: A K-nearest neighbour approach. Advances in Water Resources, 29(7), 987-999.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4