π Join our WeChat or Discord community.
π Check out the GLM-4.5 technical blog, technical report, and Zhipu AI technical documentation.
π Use GLM-4.5 API services on Z.ai API Platform (Global) or
Zhipu AI Open Platform (Mainland China).
π One click to GLM-4.5.
The GLM-4.5 series models are foundation models designed for intelligent agents. GLM-4.5 has 355 billion total parameters with 32 billion active parameters, while GLM-4.5-Air adopts a more compact design with 106 billion total parameters and 12 billion active parameters. GLM-4.5 models unify reasoning, coding, and intelligent agent capabilities to meet the complex demands of intelligent agent applications.
Both GLM-4.5 and GLM-4.5-Air are hybrid reasoning models that provide two modes: thinking mode for complex reasoning and tool usage, and non-thinking mode for immediate responses.
We have open-sourced the base models, hybrid reasoning models, and FP8 versions of the hybrid reasoning models for both GLM-4.5 and GLM-4.5-Air. They are released under the MIT open-source license and can be used commercially and for secondary development.
As demonstrated in our comprehensive evaluation across 12 industry-standard benchmarks, GLM-4.5 achieves exceptional performance with a score of 63.2, in the 3rd place among all the proprietary and open-source models. Notably, GLM-4.5-Air delivers competitive results at 59.8 while maintaining superior efficiency.
For more eval results, show cases, and technical details, please visit our technical report or technical blog.
The model code, tool parser and reasoning parser can be found in the implementation of transformers, vLLM and SGLang.
You can directly experience the model on Hugging Face or ModelScope or download the model by following the links below.
We provide minimum and recommended configurations for "full-featured" model inference. The data in the table below is based on the following conditions:
--speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4
to ensure competitive inference speed.cpu-offload
parameter is not used.8
.1T
to ensure normal model loading and operation.The models can run under the configurations in the table below:
Model Precision GPU Type and Count Test Framework GLM-4.5 BF16 H100 x 16 / H200 x 8 sglang GLM-4.5 FP8 H100 x 8 / H200 x 4 sglang GLM-4.5-Air BF16 H100 x 4 / H200 x 2 sglang GLM-4.5-Air FP8 H100 x 2 / H200 x 1 sglangUnder the configurations in the table below, the models can utilize their full 128K context length:
Model Precision GPU Type and Count Test Framework GLM-4.5 BF16 H100 x 32 / H200 x 16 sglang GLM-4.5 FP8 H100 x 16 / H200 x 8 sglang GLM-4.5-Air BF16 H100 x 8 / H200 x 4 sglang GLM-4.5-Air FP8 H100 x 4 / H200 x 2 sglangif you are using AMD GPUs, Check here for AMD GPU deployment documentation.
The code can run under the configurations in the table below using Llama Factory:
Model GPU Type and Count Strategy Batch Size (per GPU) GLM-4.5 H100 x 16 Lora 1 GLM-4.5-Air H100 x 4 Lora 1The code can run under the configurations in the table below using Swift:
Model GPU Type and Count Strategy Batch Size (per GPU) GLM-4.5 H20 (96GiB) x 16 Lora 1 GLM-4.5-Air H20 (96GiB) x 4 Lora 1 GLM-4.5 H20 (96GiB) x 128 SFT 1 GLM-4.5-Air H20 (96GiB) x 32 SFT 1 GLM-4.5 H20 (96GiB) x 128 RL 1 GLM-4.5-Air H20 (96GiB) x 32 RL 1Please install the required packages according to requirements.txt
.
pip install -r requirements.txt
Please refer to the trans_infer_cli.py
code in the inference
folder.
vllm serve zai-org/GLM-4.5-Air \ --tensor-parallel-size 8 \ --tool-call-parser glm45 \ --reasoning-parser glm45 \ --enable-auto-tool-choice \ --served-model-name glm-4.5-air
If you're using 8x H100 GPUs and encounter insufficient memory when running the GLM-4.5 model, you'll need --cpu-offload-gb 16
(only applicable to vLLM).
If you encounter flash infer
issues, use VLLM_ATTENTION_BACKEND=XFORMERS
as a temporary replacement. You can also specify TORCH_CUDA_ARCH_LIST='9.0+PTX'
to use flash infer
(different GPUs have different TORCH_CUDA_ARCH_LIST values, please check accordingly).
python3 -m sglang.launch_server \ --model-path zai-org/GLM-4.5-Air \ --tp-size 8 \ --tool-call-parser glm45 \ --reasoning-parser glm45 \ --speculative-algorithm EAGLE \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 \ --mem-fraction-static 0.7 \ --served-model-name glm-4.5-air \ --host 0.0.0.0 \ --port 8000
python3 -m sglang.launch_server \ --model-path zai-org/GLM-4.5-Air-FP8 \ --tp-size 4 \ --tool-call-parser glm45 \ --reasoning-parser glm45 \ --speculative-algorithm EAGLE \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 4 \ --mem-fraction-static 0.7 \ --disable-shared-experts-fusion \ --served-model-name glm-4.5-air-fp8 \ --host 0.0.0.0 \ --port 8000Request Parameter Instructions
vLLM
and SGLang
, thinking mode is enabled by default when sending requests. If you want to disable the thinking switch, you need to add the extra_body={"chat_template_kwargs": {"enable_thinking": False}}
parameter.api_request.py
in the inference
folder.RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4