A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/valerystrizh/pytorch-histogram-loss below:

valerystrizh/pytorch-histogram-loss: PyTorch implementation for Histogram Loss

Pretrained resnet 34 is used. Fully connected layer with 512 neurons are added to the end of the net.

  --dataroot DATAROOT   path to dataset
  --batch_size BATCH_SIZE
                        batch size for train, default=128
  --batch_size_test BATCH_SIZE_TEST
                        batch size for test and query dataloaders for market
                        dataset, default=64
  --checkpoints_path CHECKPOINTS_PATH
                        folder to output model checkpoints, default="."
  --cuda                enables cuda
  --dropout_prob DROPOUT_PROB
                        probability of dropout, default=0.7
  --lr LR               learning rate, default=1e-4
  --lr_fc LR_FC         learning rate to train fc layer, default=1e-1
  --manual_seed MANUAL_SEED
                        manual seed
  --market              calculate rank1 and mAP on Market dataset; dataroot
                        should contain folders "bounding_box_train",
                        "bounding_box_test", "query"
  --nbins NBINS         number of bins in histograms, default=150
  --nepoch NEPOCH       number of epochs to train, default=150
  --nepoch_fc NEPOCH_FC
                        number of epochs to train fc layer, default=0
  --nworkers NWORKERS   number of data loading workers, default=10
  --visdom_port VISDOM_PORT
                        port for visdom visualization
			

$ #start visdom server
$ python -m visdom.server -port 8099
$ python main.py 

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4