A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/tiny-dnn/tiny-dnn/tree/v1.0.0a3 below:

GitHub - tiny-dnn/tiny-dnn at v1.0.0a3

-----------------

tiny-dnn is a C++11 implementation of deep learning. It is suitable for deep learning on limited computational resource, embedded systems and IoT devices.

Check out the documentation for more info.

Comparison with other libraries tiny-dnn caffe Theano TensorFlow Prerequisites Nothing(Optional:TBB,OpenMP) BLAS,Boost,protobuf,glog,gflags,hdf5, (Optional:CUDA,OpenCV,lmdb,leveldb etc) Numpy,Scipy,BLAS,(optional:nose,Sphinx,CUDA etc) numpy,six,protobuf,(optional:CUDA,Bazel) Modeling By C++ code Config File Python Code Python Code GPU Support No Yes Yes Yes Installing Unnecessary Necessary Necessary Necessary Windows Support Yes No* Yes No* Pre-Trained Model Yes(via caffe-converter) Yes No* No*

*unofficial version is available

Nothing. All you need is a C++11 compiler.

tiny-dnn is header-ony, so there's nothing to build. If you want to execute sample program or unit tests, you need to install cmake and type the following commands:

Then open .sln file in visual studio and build(on windows/msvc), or type make command(on linux/mac/windows-mingw).

Some cmake options are available:

1 tiny-dnn use c++11 standard library for parallelization by default

2 If you don't use serialization, you can switch off to speedup compilation time.

3 tiny-dnn uses Google Test as default framework to run unit tests. No pre-installation required, it's automatically downloaded during CMake configuration.

For example, type the following commands if you want to use intel TBB and build tests:

cmake -DUSE_TBB=ON -DBUILD_TESTS=ON .

You can edit include/config.h to customize default behavior.

construct convolutional neural networks

#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;

void construct_cnn() {
    using namespace tiny_dnn;

    network<sequential> net;

    // add layers
    net << conv<tan_h>(32, 32, 5, 1, 6)  // in:32x32x1, 5x5conv, 6fmaps
        << ave_pool<tan_h>(28, 28, 6, 2) // in:28x28x6, 2x2pooling
        << fc<tan_h>(14 * 14 * 6, 120)   // in:14x14x6, out:120
        << fc<identity>(120, 10);        // in:120,     out:10

    assert(net.in_data_size() == 32 * 32);
    assert(net.out_data_size() == 10);

    // load MNIST dataset
    std::vector<label_t> train_labels;
    std::vector<vec_t> train_images;

    parse_mnist_labels("train-labels.idx1-ubyte", &train_labels);
    parse_mnist_images("train-images.idx3-ubyte", &train_images, -1.0, 1.0, 2, 2);

    // declare optimization algorithm
    adagrad optimizer;

    // train (50-epoch, 30-minibatch)
    net.train<mse>(optimizer, train_images, train_labels, 30, 50);

    // save
    net.save("net");

    // load
    // network<sequential> net2;
    // net2.load("net");
}

construct multi-layer perceptron(mlp)

#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;
using namespace tiny_dnn::layers;

void construct_mlp() {
    network<sequential> net;

    net << fc<sigmoid>(32 * 32, 300)
        << fc<identity>(300, 10);

    assert(net.in_data_size() == 32 * 32);
    assert(net.out_data_size() == 10);
}

another way to construct mlp

#include "tiny_dnn/tiny_dnn.h"
using namespace tiny_dnn;
using namespace tiny_dnn::activation;

void construct_mlp() {
    auto mynet = make_mlp<tan_h>({ 32 * 32, 300, 10 });

    assert(mynet.in_data_size() == 32 * 32);
    assert(mynet.out_data_size() == 10);
}

more sample, read examples/main.cpp or MNIST example page.

Since deep learning community is rapidly growing, we'd love to get contributions from you to accelerate tiny-dnn development! For a quick guide to contributing, take a look at the Contribution Documents.

[1] Y. Bengio, Practical Recommendations for Gradient-Based Training of Deep Architectures. arXiv:1206.5533v2, 2012

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324.

other useful reference lists:

The BSD 3-Clause License

We have a gitter rooms for discussing new features & QA. Feel free to join us!


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4