A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/tidyverts/fable below:

tidyverts/fable: Tidy time series forecasting

fable

The R package fable provides a collection of commonly used univariate and multivariate time series forecasting models including exponential smoothing via state space models and automatic ARIMA modelling. These models work within the fable framework, which provides the tools to evaluate, visualise, and combine models in a workflow consistent with the tidyverse.

You can install the stable version from CRAN:

install.packages("fable")

You can install the development version from GitHub

# install.packages("remotes")
remotes::install_github("tidyverts/fable")

Installing this software requires a compiler

library(fable)
library(tsibble)
library(tsibbledata)
library(lubridate)
library(dplyr)
aus_retail %>%
  filter(
    State %in% c("New South Wales", "Victoria"),
    Industry == "Department stores"
  ) %>% 
  model(
    ets = ETS(box_cox(Turnover, 0.3)),
    arima = ARIMA(log(Turnover)),
    snaive = SNAIVE(Turnover)
  ) %>%
  forecast(h = "2 years") %>% 
  autoplot(filter(aus_retail, year(Month) > 2010), level = NULL)

Learning to forecast with fable

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4