With the idea of (finally!) coming up with a formal replacement.
Imaginary code:
gapminder %>% nest_by(country) %>% mutate(fit = lm(lifeExp ~ year, data = data)) %>% summarise(broom::tidy(fit))
Equivalent to:
library(gapminder) library(tidyverse) gapminder %>% group_by(country) %>% nest() %>% mutate( fit = map(data, ~ lm(lifeExp ~ year, data = .x)), tidy = map(fit, broom::tidy) ) %>% select(tidy) %>% unnest(tidy) #> Adding missing grouping variables: `country` #> # A tibble: 284 x 6 #> # Groups: country [142] #> country term estimate std.error statistic p.value #> <fct> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 Afghanistan (Intercept) -508. 40.5 -12.5 1.93e- 7 #> 2 Afghanistan year 0.275 0.0205 13.5 9.84e- 8 #> 3 Albania (Intercept) -594. 65.7 -9.05 3.94e- 6 #> 4 Albania year 0.335 0.0332 10.1 1.46e- 6 #> 5 Algeria (Intercept) -1068. 43.8 -24.4 3.07e-10 #> 6 Algeria year 0.569 0.0221 25.7 1.81e-10 #> 7 Angola (Intercept) -377. 46.6 -8.08 1.08e- 5 #> 8 Angola year 0.209 0.0235 8.90 4.59e- 6 #> 9 Argentina (Intercept) -390. 9.68 -40.3 2.14e-12 #> 10 Argentina year 0.232 0.00489 47.4 4.22e-13 #> # … with 274 more rows
Or
gapminder %>%
group_by(country) %>%
do(fit = lm(lifeExp ~ year, data = .)) %>%
do(data.frame(country = .$country, broom::tidy(.$fit)))
This requires:
mutate.rowwise()
needs to automatically wrap in outputs in list where needed.rowwise()
needs to be able to capture grouping variables; or grouped_df
needs some way to activate row-wise magic?summarise.rowwise()
would return grouped_df
since might no longer have 1 row per group?nest_by()
that works like group_nest()
+ rowwise()
. Needs a lot of thinking about name.RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4