+33
-24
lines changedFilter options
+33
-24
lines changed Original file line number Diff line number Diff line change
@@ -309,7 +309,7 @@ set_model_arg(
309
309
model = "boost_tree",
310
310
eng = "spark",
311
311
parsnip = "min_info_gain",
312
-
original = "gamma",
312
+
original = "loss_reduction",
313
313
func = list(pkg = "dials", fun = "loss_reduction"),
314
314
has_submodel = FALSE
315
315
)
Original file line number Diff line number Diff line change
@@ -342,6 +342,15 @@ set_model_engine("linear_reg", "regression", "keras")
342
342
set_dependency("linear_reg", "keras", "keras")
343
343
set_dependency("linear_reg", "keras", "magrittr")
344
344
345
+
set_model_arg(
346
+
model = "linear_reg",
347
+
eng = "keras",
348
+
parsnip = "penalty",
349
+
original = "penalty",
350
+
func = list(pkg = "dials", fun = "penalty"),
351
+
has_submodel = FALSE
352
+
)
353
+
345
354
set_fit(
346
355
model = "linear_reg",
347
356
eng = "keras",
Original file line number Diff line number Diff line change
@@ -288,9 +288,9 @@ set_dependency("logistic_reg", "keras", "magrittr")
288
288
set_model_arg(
289
289
model = "logistic_reg",
290
290
eng = "keras",
291
-
parsnip = "decay",
292
-
original = "decay",
293
-
func = list(pkg = "dials", fun = "weight_decay"),
291
+
parsnip = "penalty",
292
+
original = "penalty",
293
+
func = list(pkg = "dials", fun = "penalty"),
294
294
has_submodel = FALSE
295
295
)
296
296
Original file line number Diff line number Diff line change
@@ -265,12 +265,12 @@ class2ind <- function (x, drop2nd = FALSE) {
265
265
#' @param x A data frame or matrix of predictors
266
266
#' @param y A vector (factor or numeric) or matrix (numeric) of outcome data.
267
267
#' @param hidden_units An integer for the number of hidden units.
268
-
#' @param decay A non-negative real number for the amount of weight decay. Either
268
+
#' @param penalty A non-negative real number for the amount of weight decay. Either
269
269
#' this parameter _or_ `dropout` can specified.
270
270
#' @param dropout The proportion of parameters to set to zero. Either
271
-
#' this parameter _or_ `decay` can specified.
271
+
#' this parameter _or_ `penalty` can specified.
272
272
#' @param epochs An integer for the number of passes through the data.
273
-
#' @param act A character string for the type of activation function between layers.
273
+
#' @param activation A character string for the type of activation function between layers.
274
274
#' @param seeds A vector of three positive integers to control randomness of the
275
275
#' calculations.
276
276
#' @param ... Currently ignored.
@@ -279,11 +279,11 @@ class2ind <- function (x, drop2nd = FALSE) {
279
279
#' @export
280
280
keras_mlp <-
281
281
function(x, y,
282
-
hidden_units = 5, decay = 0, dropout = 0, epochs = 20, act = "softmax",
282
+
hidden_units = 5, penalty = 0, dropout = 0, epochs = 20, activation = "softmax",
283
283
seeds = sample.int(10^5, size = 3),
284
284
...) {
285
285
286
-
if (decay > 0 & dropout > 0) {
286
+
if (penalty > 0 & dropout > 0) {
287
287
stop("Please use either dropoput or weight decay.", call. = FALSE)
288
288
}
289
289
if (!is.matrix(x)) {
@@ -307,20 +307,20 @@ keras_mlp <-
307
307
308
308
model <- keras::keras_model_sequential()
309
309
310
-
if (decay > 0) {
310
+
if (penalty > 0) {
311
311
model %>%
312
312
keras::layer_dense(
313
313
units = hidden_units,
314
-
activation = act,
314
+
activation = activation,
315
315
input_shape = ncol(x),
316
-
kernel_regularizer = keras::regularizer_l2(decay),
316
+
kernel_regularizer = keras::regularizer_l2(penalty),
317
317
kernel_initializer = keras::initializer_glorot_uniform(seed = seeds[1])
318
318
)
319
319
} else {
320
320
model %>%
321
321
keras::layer_dense(
322
322
units = hidden_units,
323
-
activation = act,
323
+
activation = activation,
324
324
input_shape = ncol(x),
325
325
kernel_initializer = keras::initializer_glorot_uniform(seed = seeds[1])
326
326
)
@@ -330,7 +330,7 @@ keras_mlp <-
330
330
model %>%
331
331
keras::layer_dense(
332
332
units = hidden_units,
333
-
activation = act,
333
+
activation = activation,
334
334
input_shape = ncol(x),
335
335
kernel_initializer = keras::initializer_glorot_uniform(seed = seeds[1])
336
336
) %>%
Original file line number Diff line number Diff line change
@@ -24,7 +24,7 @@ set_model_arg(
24
24
eng = "keras",
25
25
parsnip = "penalty",
26
26
original = "penalty",
27
-
func = list(pkg = "dials", fun = "weight_decay"),
27
+
func = list(pkg = "dials", fun = "penalty"),
28
28
has_submodel = FALSE
29
29
)
30
30
set_model_arg(
@@ -188,7 +188,7 @@ set_model_arg(
188
188
eng = "nnet",
189
189
parsnip = "penalty",
190
190
original = "decay",
191
-
func = list(pkg = "dials", fun = "weight_decay"),
191
+
func = list(pkg = "dials", fun = "penalty"),
192
192
has_submodel = FALSE
193
193
)
194
194
set_model_arg(
Original file line number Diff line number Diff line change
@@ -172,9 +172,9 @@ set_dependency("multinom_reg", "keras", "magrittr")
172
172
set_model_arg(
173
173
model = "multinom_reg",
174
174
eng = "keras",
175
-
parsnip = "decay",
176
-
original = "decay",
177
-
func = list(pkg = "dials", fun = "weight_decay"),
175
+
parsnip = "penalty",
176
+
original = "penalty",
177
+
func = list(pkg = "dials", fun = "penalty"),
178
178
has_submodel = FALSE
179
179
)
180
180
You can’t perform that action at this time.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4