TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it.
TFLearn features include:
The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks... In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.
Note: Latest TFLearn (v0.5) is only compatible with TensorFlow v2.0 and over.
# Classification tflearn.init_graph(num_cores=8, gpu_memory_fraction=0.5) net = tflearn.input_data(shape=[None, 784]) net = tflearn.fully_connected(net, 64) net = tflearn.dropout(net, 0.5) net = tflearn.fully_connected(net, 10, activation='softmax') net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy') model = tflearn.DNN(net) model.fit(X, Y)
# Sequence Generation net = tflearn.input_data(shape=[None, 100, 5000]) net = tflearn.lstm(net, 64) net = tflearn.dropout(net, 0.5) net = tflearn.fully_connected(net, 5000, activation='softmax') net = tflearn.regression(net, optimizer='adam', loss='categorical_crossentropy') model = tflearn.SequenceGenerator(net, dictionary=idx, seq_maxlen=100) model.fit(X, Y) model.generate(50, temperature=1.0)
There are many more examples available here.
TFLearn is based on the original tensorflow v1 graph API. When using TFLearn, make sure to import tensorflow that way:
import tflearn
import tensorflow.compat.v1 as tf
TensorFlow Installation
TFLearn requires Tensorflow (version 2.0+) to be installed.
To install TensorFlow, simply run:
or, with GPU-support:
pip install tensorflow-gpu
For more details see TensorFlow installation instructions
TFLearn Installation
To install TFLearn, the easiest way is to run
For the bleeding edge version (recommended):
pip install git+https://github.com/tflearn/tflearn.git
For the latest stable version:
Otherwise, you can also install from source by running (from source folder):
See Getting Started with TFLearn to learn about TFLearn basic functionalities or start browsing TFLearn Tutorials.
There are many neural network implementation available, see Examples.
Graph
Loss & Accuracy (multiple runs)
Layers
This is the first release of TFLearn, if you find any bug, please report it in the GitHub issues section.
Improvements and requests for new features are more than welcome! Do not hesitate to twist and tweak TFLearn, and send pull-requests.
For more info: Contribute to TFLearn.
MIT License
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4