A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/szagoruyko/pytorchviz below:

szagoruyko/pytorchviz: A small package to create visualizations of PyTorch execution graphs

A small package to create visualizations of PyTorch execution graphs and traces.

Install graphviz, e.g.:

Install the package itself:

Example usage of make_dot:

model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()))

Set show_attrs=True and show_saved=True to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.)

model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)

The script was moved from functional-zoo where it was created with the help of Adam Paszke, Soumith Chintala, Anton Osokin, and uses bits from tensorboard-pytorch. Other contributors are @willprice, @soulitzer, @albanD.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4