A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/stuart-lab/signac/issues/1198 below:

Error in NucleosomeSignal and TSSEnrichment coming from chromap counts · Issue #1198 · stuart-lab/signac · GitHub

Hi,
I'm importing fragments, peaks, and counts from chromap and trying to get all the metadata collected using signac functions.

For each sample, I'm doing the following

# Load genome annotations
annotations = GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v86)
seqlevelsStyle(annotations) = 'UCSC'
genome(annotations) = "hg38"

# Load peaks as GRanges object
p = as.data.frame(read.table("peaks_merged.bed",header=F,sep="\t"))
colnames(p) = c("chr","start","stop")
peaks = makeGRangesFromDataFrame(p)


# Create Fragment objects, then Feature Matrix, then Seurat objects for each sample

p1_path <- "patient1_fragments.bed.gz"
p1_cells <- read_tsv(p1_path,col_names=c("chr","start","stop","cell","support"),col_types=c("-","-","-","-","c"),col_select="cell") %>% pull(cell) %>% unique()
names(x = p1_cells) <- paste0("Patient1-diag", p1_cells)
p1_frags <- CreateFragmentObject(path = p1_path, cells = p1_cells, max.lines=NULL)
p1_mat <- FeatureMatrix(
  fragments = p1_frags,
  features = peaks,
  process_n = 20000,
  sep = c("-", "-"),
  verbose = TRUE
)
p1_assay <- CreateChromatinAssay(p1_mat, fragments = p1_frags, genome = 'hg38')
p1_seurat <- CreateSeuratObject(p1_assay, assay = "peaks")
p1_seurat$Sample <- "Patient1-diag"
p1_seurat$Patient <- "Patient1"
p1_seurat$Disease <- "Diag"

This all goes fine.

However if I try to compute Nucleosomal signal with NucleosomeSignal, I get the following error:

p1_seurat <- NucleosomeSignal(p1_seurat)
Found 3345708 cell barcodes
Done Processing 150 million linesError in ecdf(x = af$nucleosome_signal) : 
  'x' must have 1 or more non-missing values

I thought this maybe was related to #786 or #826, but my annotations/seqlevels all appear to be correct as is:

> seqlevelsStyle(annotations) 
[1] "UCSC"

> seqlevels(annotations)
 [1] "chrX"  "chr20" "chr1"  "chr6"  "chr3"  "chr7"  "chr12" "chr11" "chr4"  "chr17" "chr2" 
[12] "chr16" "chr8"  "chr19" "chr9"  "chr13" "chr14" "chr5"  "chr22" "chr10" "chrY"  "chr18"
[23] "chr15" "chr21" "chrM" 

> head(Fragments(p1_seurat)[[1]])
  chrom start   end          barcode readCount
1  chr1 10084 10497 TACTGCCAGCTAACAA         1
2  chr1 10091 10301 CACCACTCAGAAAGCG         1
3  chr1 10091 10301 CACCACTCAGTGAGCG         1
4  chr1 10095 10507 GTGTCAAGTGATGCGA         1
5  chr1 10097 10512 AGTCAACCATAAAGTG         1
6  chr1 10151 10186 TAGCTTTGTTTGATCG         1

I also suspected it was because my seurat object didn't have CountFragments run on it, which I can do separately (successfully):

p1_fragmentInfo <- CountFragments(p1_path)
rownames(p1_fragmentInfo) <- p1_fragmentInfo$CB

p1_seurat$fragments <- p1_fragmentInfo[colnames(p1_seurat), "frequency_count"]
p1_seurat$mononucleosomal <- p1_fragmentInfo[colnames(p1_seurat), "mononucleosomal"]
p1_seurat$nucleosome_free <- p1_fragmentInfo[colnames(p1_seurat), "nucleosome_free"]
p1_seurat$reads_count <- p1_fragmentInfo[colnames(p1_seurat), "reads_count"]

p1_seurat <- FRiP(
  object = p1_seurat,
  assay = 'peaks',
  total.fragments = "fragments"
)

p1_seurat$blacklist_fraction <- FractionCountsInRegion(
  object = p1_seurat, 
  assay = 'peaks',
  regions = blacklist_hg38
)

both FRiP and FractionCountsInRegion run successfully, however NucleosomeSignal and TSSEnrichment continue to fail with the same error.

I feel like there must be something these functions is expecting to find that isn't there, but I can't figure out what.

Any help would be appreciated!

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Red Hat Enterprise Linux 8.5 (Ootpa)

Matrix products: default
BLAS/LAPACK: /nas/longleaf/rhel8/apps/r/4.1.0/lib/libopenblas_haswellp-r0.3.5.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] EnsDb.Hsapiens.v86_2.99.0 ensembldb_2.18.3          AnnotationFilter_1.18.0  
 [4] GenomicFeatures_1.46.5    AnnotationDbi_1.56.2      Biobase_2.54.0           
 [7] Signac_1.7.0              SeuratObject_4.0.4        Seurat_4.1.0             
[10] GenomicRanges_1.46.1      GenomeInfoDb_1.30.1       IRanges_2.28.0           
[13] S4Vectors_0.32.4          BiocGenerics_0.40.0       forcats_0.5.1            
[16] stringr_1.4.0             dplyr_1.0.9               purrr_0.3.4              
[19] readr_2.1.2               tidyr_1.2.0               tibble_3.1.8             
[22] ggplot2_3.3.6             tidyverse_1.3.1          

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                  reticulate_1.25             tidyselect_1.1.2           
  [4] RSQLite_2.2.10              htmlwidgets_1.5.4           grid_4.1.0                 
  [7] BiocParallel_1.28.3         Rtsne_0.15                  munsell_0.5.0              
 [10] codetools_0.2-18            ica_1.0-2                   future_1.24.0              
 [13] miniUI_0.1.1.1              withr_2.5.0                 spatstat.random_2.1-0      
 [16] colorspace_2.0-3            filelock_1.0.2              rstudioapi_0.13            
 [19] ROCR_1.0-11                 tensor_1.5                  listenv_0.8.0              
 [22] MatrixGenerics_1.6.0        GenomeInfoDbData_1.2.7      polyclip_1.10-0            
 [25] bit64_4.0.5                 parallelly_1.30.0           vctrs_0.4.1                
 [28] generics_0.1.2              BiocFileCache_2.2.1         R6_2.5.1                   
 [31] DelayedArray_0.20.0         bitops_1.0-7                spatstat.utils_2.3-0       
 [34] cachem_1.0.6                assertthat_0.2.1            promises_1.2.0.1           
 [37] BiocIO_1.4.0                scales_1.2.0                gtable_0.3.0               
 [40] globals_0.14.0              goftest_1.2-3               rlang_1.0.4                
 [43] RcppRoll_0.3.0              splines_4.1.0               rtracklayer_1.54.0         
 [46] lazyeval_0.2.2              spatstat.geom_2.3-2         broom_1.0.0                
 [49] yaml_2.3.5                  reshape2_1.4.4              abind_1.4-5                
 [52] modelr_0.1.8                backports_1.4.1             httpuv_1.6.5               
 [55] tools_4.1.0                 ellipsis_0.3.2              spatstat.core_2.4-0        
 [58] RColorBrewer_1.1-3          ggridges_0.5.3              Rcpp_1.0.8.3               
 [61] plyr_1.8.7                  progress_1.2.2              zlibbioc_1.40.0            
 [64] RCurl_1.98-1.6              prettyunits_1.1.1           rpart_4.1.16               
 [67] deldir_1.0-6                pbapply_1.5-0               cowplot_1.1.1              
 [70] zoo_1.8-9                   SummarizedExperiment_1.24.0 haven_2.4.3                
 [73] ggrepel_0.9.1               cluster_2.1.2               fs_1.5.2                   
 [76] magrittr_2.0.2              data.table_1.14.2           scattermore_0.8            
 [79] lmtest_0.9-40               reprex_2.0.1                RANN_2.6.1                 
 [82] ProtGenerics_1.26.0         fitdistrplus_1.1-6          matrixStats_0.62.0         
 [85] hms_1.1.1                   patchwork_1.1.1             mime_0.12                  
 [88] xtable_1.8-4                XML_3.99-0.9                readxl_1.3.1               
 [91] gridExtra_2.3               compiler_4.1.0              biomaRt_2.50.3             
 [94] KernSmooth_2.23-20          crayon_1.5.1                htmltools_0.5.2            
 [97] mgcv_1.8-40                 later_1.3.0                 tzdb_0.2.0                 
[100] lubridate_1.8.0             DBI_1.1.2                   dbplyr_2.1.1               
[103] MASS_7.3-55                 rappdirs_0.3.3              Matrix_1.4-0               
[106] cli_3.3.0                   parallel_4.1.0              igraph_1.3.3               
[109] pkgconfig_2.0.3             GenomicAlignments_1.30.0    plotly_4.10.0              
[112] spatstat.sparse_2.1-0       xml2_1.3.3                  XVector_0.34.0             
[115] rvest_1.0.2                 digest_0.6.29               sctransform_0.3.3          
[118] RcppAnnoy_0.0.19            spatstat.data_2.1-2         Biostrings_2.62.0          
[121] cellranger_1.1.0            leiden_0.3.9                fastmatch_1.1-3            
[124] uwot_0.1.11                 restfulr_0.0.13             curl_4.3.2                 
[127] shiny_1.7.1                 Rsamtools_2.10.0            rjson_0.2.21               
[130] lifecycle_1.0.1             nlme_3.1-155                jsonlite_1.8.0             
[133] viridisLite_0.4.0           fansi_1.0.3                 pillar_1.7.0               
[136] lattice_0.20-45             KEGGREST_1.34.0             fastmap_1.1.0              
[139] httr_1.4.2                  survival_3.2-13             glue_1.6.2                 
[142] png_0.1-7                   bit_4.0.4                   stringi_1.7.6              
[145] blob_1.2.2                  memoise_2.0.1               irlba_2.3.5                
[148] future.apply_1.8.1     

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4