Exact matrix algebra for matrices with rational entries.
# a rational matrix M ## [,1] [,2] [,3] [,4] ## [1,] "7" "4/7" "1/4" "2/3" ## [2,] "3/5" "2" "3/2" "3/4" ## [3,] "10/3" "10" "7" "1" ## [4,] "1" "5/2" "1/3" "7/2" # determinant Qdet(M) ## [1] "-227405/3024" # inverse Qinverse(M) ## [,1] [,2] [,3] [,4] ## [1,] "6678/45481" "-2274/45481" "2901/454810" "-4338/227405" ## [2,] "-17892/227405" "-491624/227405" "510993/1137025" "397782/1137025" ## [3,] "9324/227405" "666168/227405" "-525726/1137025" "-572424/1137025" ## [4,] "2352/227405" "290964/227405" "-316998/1137025" "101448/1137025" # check library(gmp) as.bigq(M) %*% as.bigq(Qinverse(M)) ## Big Rational ('bigq') 4 x 4 matrix: ## [,1] [,2] [,3] [,4] ## [1,] 1 0 0 0 ## [2,] 0 1 0 0 ## [3,] 0 0 1 0 ## [4,] 0 0 0 1
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4