A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/stemangiola/tidyseurat below:

stemangiola/tidyseurat: Seurat meets tidyverse. The best of both worlds.

tidyseurat - part of tidytranscriptomics

Brings Seurat to the tidyverse!

website: stemangiola.github.io/tidyseurat/

Please also have a look at

visual cue

tidyseurat provides a bridge between the Seurat single-cell package [@butler2018integrating; @stuart2019comprehensive] and the tidyverse [@wickham2019welcome]. It creates an invisible layer that enables viewing the Seurat object as a tidyverse tibble, and provides Seurat-compatible dplyr, tidyr, ggplot and plotly functions.

Functions/utilities available Seurat-compatible Functions Description all tidyverse Packages Description dplyr All dplyr APIs like for any tibble tidyr All tidyr APIs like for any tibble ggplot2 ggplot like for any tibble plotly plot_ly like for any tibble Utilities Description tidy Add tidyseurat invisible layer over a Seurat object as_tibble Convert cell-wise information to a tbl_df join_features Add feature-wise information, returns a tbl_df aggregate_cells Aggregate cell gene-transcription abundance as pseudobulk tissue

From CRAN

install.packages("tidyseurat")

From Github (development)

devtools::install_github("stemangiola/tidyseurat")
library(dplyr)
library(tidyr)
library(purrr)
library(magrittr)
library(ggplot2)
library(Seurat)
library(tidyseurat)
Create tidyseurat, the best of both worlds!

This is a seurat object but it is evaluated as tibble. So it is fully compatible both with Seurat and tidyverse APIs.

pbmc_small = SeuratObject::pbmc_small

It looks like a tibble

## # A Seurat-tibble abstraction: 80 × 15
## # [90mFeatures=230 | Cells=80 | Active assay=RNA | Assays=RNA[0m
##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
##  1 ATGC… SeuratPro…         70           47 0               A             g2    
##  2 CATG… SeuratPro…         85           52 0               A             g1    
##  3 GAAC… SeuratPro…         87           50 1               B             g2    
##  4 TGAC… SeuratPro…        127           56 0               A             g2    
##  5 AGTC… SeuratPro…        173           53 0               A             g2    
##  6 TCTG… SeuratPro…         70           48 0               A             g1    
##  7 TGGT… SeuratPro…         64           36 0               A             g1    
##  8 GCAG… SeuratPro…         72           45 0               A             g1    
##  9 GATA… SeuratPro…         52           36 0               A             g1    
## 10 AATG… SeuratPro…        100           41 0               A             g1    
## # ℹ 70 more rows
## # ℹ 8 more variables: RNA_snn_res.1 <fct>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>,
## #   PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>

But it is a Seurat object after all

## $RNA
## Assay data with 230 features for 80 cells
## Top 10 variable features:
##  PPBP, IGLL5, VDAC3, CD1C, AKR1C3, PF4, MYL9, GNLY, TREML1, CA2

Set colours and theme for plots.

# Use colourblind-friendly colours
friendly_cols <- c("#88CCEE", "#CC6677", "#DDCC77", "#117733", "#332288", "#AA4499", "#44AA99", "#999933", "#882255", "#661100", "#6699CC")

# Set theme
my_theme <-
  list(
    scale_fill_manual(values = friendly_cols),
    scale_color_manual(values = friendly_cols),
    theme_bw() +
      theme(
        panel.border = element_blank(),
        axis.line = element_line(),
        panel.grid.major = element_line(size = 0.2),
        panel.grid.minor = element_line(size = 0.1),
        text = element_text(size = 12),
        legend.position = "bottom",
        aspect.ratio = 1,
        strip.background = element_blank(),
        axis.title.x = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10)),
        axis.title.y = element_text(margin = margin(t = 10, r = 10, b = 10, l = 10))
      )
  )

We can treat pbmc_small effectively as a normal tibble for plotting.

Here we plot number of features per cell.

pbmc_small %>%
  ggplot(aes(nFeature_RNA, fill = groups)) +
  geom_histogram() +
  my_theme

Here we plot total features per cell.

pbmc_small %>%
  ggplot(aes(groups, nCount_RNA, fill = groups)) +
  geom_boxplot(outlier.shape = NA) +
  geom_jitter(width = 0.1) +
  my_theme

Here we plot abundance of two features for each group.

pbmc_small %>%
  join_features(features = c("HLA-DRA", "LYZ")) %>%
  ggplot(aes(groups, .abundance_RNA + 1, fill = groups)) +
  geom_boxplot(outlier.shape = NA) +
  geom_jitter(aes(size = nCount_RNA), alpha = 0.5, width = 0.2) +
  scale_y_log10() +
  my_theme

Also you can treat the object as Seurat object and proceed with data processing.

pbmc_small_pca <-
  pbmc_small %>%
  SCTransform(verbose = FALSE) %>%
  FindVariableFeatures(verbose = FALSE) %>%
  RunPCA(verbose = FALSE)

pbmc_small_pca
## # A Seurat-tibble abstraction: 80 × 17
## # [90mFeatures=220 | Cells=80 | Active assay=SCT | Assays=RNA, SCT[0m
##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
##  1 ATGC… SeuratPro…         70           47 0               A             g2    
##  2 CATG… SeuratPro…         85           52 0               A             g1    
##  3 GAAC… SeuratPro…         87           50 1               B             g2    
##  4 TGAC… SeuratPro…        127           56 0               A             g2    
##  5 AGTC… SeuratPro…        173           53 0               A             g2    
##  6 TCTG… SeuratPro…         70           48 0               A             g1    
##  7 TGGT… SeuratPro…         64           36 0               A             g1    
##  8 GCAG… SeuratPro…         72           45 0               A             g1    
##  9 GATA… SeuratPro…         52           36 0               A             g1    
## 10 AATG… SeuratPro…        100           41 0               A             g1    
## # ℹ 70 more rows
## # ℹ 10 more variables: RNA_snn_res.1 <fct>, nCount_SCT <dbl>,
## #   nFeature_SCT <int>, PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>,
## #   PC_5 <dbl>, tSNE_1 <dbl>, tSNE_2 <dbl>

If a tool is not included in the tidyseurat collection, we can use as_tibble to permanently convert tidyseurat into tibble.

pbmc_small_pca %>%
  as_tibble() %>%
  select(contains("PC"), everything()) %>%
  GGally::ggpairs(columns = 1:5, ggplot2::aes(colour = groups)) +
  my_theme

We proceed with cluster identification with Seurat.

pbmc_small_cluster <-
  pbmc_small_pca %>%
  FindNeighbors(verbose = FALSE) %>%
  FindClusters(method = "igraph", verbose = FALSE)

pbmc_small_cluster
## # A Seurat-tibble abstraction: 80 × 19
## # [90mFeatures=220 | Cells=80 | Active assay=SCT | Assays=RNA, SCT[0m
##    .cell orig.ident nCount_RNA nFeature_RNA RNA_snn_res.0.8 letter.idents groups
##    <chr> <fct>           <dbl>        <int> <fct>           <fct>         <chr> 
##  1 ATGC… SeuratPro…         70           47 0               A             g2    
##  2 CATG… SeuratPro…         85           52 0               A             g1    
##  3 GAAC… SeuratPro…         87           50 1               B             g2    
##  4 TGAC… SeuratPro…        127           56 0               A             g2    
##  5 AGTC… SeuratPro…        173           53 0               A             g2    
##  6 TCTG… SeuratPro…         70           48 0               A             g1    
##  7 TGGT… SeuratPro…         64           36 0               A             g1    
##  8 GCAG… SeuratPro…         72           45 0               A             g1    
##  9 GATA… SeuratPro…         52           36 0               A             g1    
## 10 AATG… SeuratPro…        100           41 0               A             g1    
## # ℹ 70 more rows
## # ℹ 12 more variables: RNA_snn_res.1 <fct>, nCount_SCT <dbl>,
## #   nFeature_SCT <int>, SCT_snn_res.0.8 <fct>, seurat_clusters <fct>,
## #   PC_1 <dbl>, PC_2 <dbl>, PC_3 <dbl>, PC_4 <dbl>, PC_5 <dbl>, tSNE_1 <dbl>,
## #   tSNE_2 <dbl>

Now we can interrogate the object as if it was a regular tibble data frame.

pbmc_small_cluster %>%
  count(groups, seurat_clusters)
## # A tibble: 6 × 3
##   groups seurat_clusters     n
##   <chr>  <fct>           <int>
## 1 g1     0                  23
## 2 g1     1                  17
## 3 g1     2                   4
## 4 g2     0                  17
## 5 g2     1                  13
## 6 g2     2                   6

We can identify cluster markers using Seurat.

# Identify top 10 markers per cluster
markers <-
  pbmc_small_cluster %>%
  FindAllMarkers(only.pos = TRUE, min.pct = 0.25, thresh.use = 0.25) %>%
  group_by(cluster) %>%
  top_n(10, avg_log2FC)

# Plot heatmap
pbmc_small_cluster %>%
  DoHeatmap(
    features = markers$gene,
    group.colors = friendly_cols
  )

We can calculate the first 3 UMAP dimensions using the Seurat framework.

pbmc_small_UMAP <-
  pbmc_small_cluster %>%
  RunUMAP(reduction = "pca", dims = 1:15, n.components = 3L)

And we can plot them using 3D plot using plotly.

pbmc_small_UMAP %>%
  plot_ly(
    x = ~`UMAP_1`,
    y = ~`UMAP_2`,
    z = ~`UMAP_3`,
    color = ~seurat_clusters,
    colors = friendly_cols[1:4]
  )

screenshot plotly

We can infer cell type identities using SingleR [@aran2019reference] and manipulate the output using tidyverse.

# Get cell type reference data
blueprint <- celldex::BlueprintEncodeData()

# Infer cell identities
cell_type_df <-
  GetAssayData(pbmc_small_UMAP, slot = 'counts', assay = "SCT") %>%
  log1p() %>%
  Matrix::Matrix(sparse = TRUE) %>%
  SingleR::SingleR(
    ref = blueprint,
    labels = blueprint$label.main,
    method = "single"
  ) %>%
  as.data.frame() %>%
  as_tibble(rownames = "cell") %>%
  select(cell, first.labels)
# Join UMAP and cell type info
pbmc_small_cell_type <-
  pbmc_small_UMAP %>%
  left_join(cell_type_df, by = "cell")

# Reorder columns
pbmc_small_cell_type %>%
  select(cell, first.labels, everything())

We can easily summarise the results. For example, we can see how cell type classification overlaps with cluster classification.

pbmc_small_cell_type %>%
  count(seurat_clusters, first.labels)

We can easily reshape the data for building information-rich faceted plots.

pbmc_small_cell_type %>%

  # Reshape and add classifier column
  pivot_longer(
    cols = c(seurat_clusters, first.labels),
    names_to = "classifier", values_to = "label"
  ) %>%

  # UMAP plots for cell type and cluster
  ggplot(aes(UMAP_1, UMAP_2, color = label)) +
  geom_point() +
  facet_wrap(~classifier) +
  my_theme

We can easily plot gene correlation per cell category, adding multi-layer annotations.

pbmc_small_cell_type %>%

  # Add some mitochondrial abundance values
  mutate(mitochondrial = rnorm(n())) %>%

  # Plot correlation
  join_features(features = c("CST3", "LYZ"), shape = "wide") %>%
  ggplot(aes(CST3 + 1, LYZ + 1, color = groups, size = mitochondrial)) +
  geom_point() +
  facet_wrap(~first.labels, scales = "free") +
  scale_x_log10() +
  scale_y_log10() +
  my_theme

A powerful tool we can use with tidyseurat is nest. We can easily perform independent analyses on subsets of the dataset. First we classify cell types in lymphoid and myeloid; then, nest based on the new classification

pbmc_small_nested <-
  pbmc_small_cell_type %>%
  filter(first.labels != "Erythrocytes") %>%
  mutate(cell_class = if_else(`first.labels` %in% c("Macrophages", "Monocytes"), "myeloid", "lymphoid")) %>%
  nest(data = -cell_class)

pbmc_small_nested

Now we can independently for the lymphoid and myeloid subsets (i) find variable features, (ii) reduce dimensions, and (iii) cluster using both tidyverse and Seurat seamlessly.

pbmc_small_nested_reanalysed <-
  pbmc_small_nested %>%
  mutate(data = map(
    data, ~ .x %>%
      FindVariableFeatures(verbose = FALSE) %>%
      RunPCA(npcs = 10, verbose = FALSE) %>%
      FindNeighbors(verbose = FALSE) %>%
      FindClusters(method = "igraph", verbose = FALSE) %>%
      RunUMAP(reduction = "pca", dims = 1:10, n.components = 3L, verbose = FALSE)
  ))

pbmc_small_nested_reanalysed

Now we can unnest and plot the new classification.

pbmc_small_nested_reanalysed %>%

  # Convert to tibble otherwise Seurat drops reduced dimensions when unifying data sets.
  mutate(data = map(data, ~ .x %>% as_tibble())) %>%
  unnest(data) %>%

  # Define unique clusters
  unite("cluster", c(cell_class, seurat_clusters), remove = FALSE) %>%

  # Plotting
  ggplot(aes(UMAP_1, UMAP_2, color = cluster)) +
  geom_point() +
  facet_wrap(~cell_class) +
  my_theme

Sometimes, it is necessary to aggregate the gene-transcript abundance from a group of cells into a single value. For example, when comparing groups of cells across different samples with fixed-effect models.

In tidyseurat, cell aggregation can be achieved using the aggregate_cells function.

pbmc_small %>%
  aggregate_cells(groups, assays = "RNA")

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4