metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised metric learning algorithms. As part of scikit-learn-contrib, the API of metric-learn is compatible with scikit-learn, the leading library for machine learning in Python. This allows to use all the scikit-learn routines (for pipelining, model selection, etc) with metric learning algorithms through a unified interface.
Algorithms
Dependencies
Optional dependencies
pip install 'git+https://github.com/skggm/skggm.git@a0ed406586c4364ea3297a658f415e13b5cbdaf8'
to install the required version of skggm from GitHub.Installation/Setup
conda install -c conda-forge metric-learn
. See more options here.pip install metric-learn
.python setup.py install
. You may then run pytest test
to run all tests (you will need to have the pytest
package installed).Usage
See the sphinx documentation for full documentation about installation, API, usage, and examples.
Citation
If you use metric-learn in a scientific publication, we would appreciate citations to the following paper:
metric-learn: Metric Learning Algorithms in Python, de Vazelhes et al., Journal of Machine Learning Research, 21(138):1-6, 2020.
Bibtex entry:
@article{metric-learn, title = {metric-learn: {M}etric {L}earning {A}lgorithms in {P}ython}, author = {{de Vazelhes}, William and {Carey}, CJ and {Tang}, Yuan and {Vauquier}, Nathalie and {Bellet}, Aur{\'e}lien}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {138}, pages = {1--6} }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4