I am currently focusing on AutoGPTQ and recommend using AutoGPTQ instead of GPTQ for Llama.
4 bits quantization of LLaMA using GPTQ
GPTQ is SOTA one-shot weight quantization method
It can be used universally, but it is not the fastest and only supports linux.
Triton only supports Linux, so if you are a Windows user, please use WSL2.
AutoGPTQ-triton, a packaged version of GPTQ with triton, has been integrated into AutoGPTQ.
LLaMA-7B(click me) LLaMA-7B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - 13940 5.68 12.5 RTN 4 - - 6.29 - GPTQ 4 - 4740 6.09 3.5 GPTQ 4 128 4891 5.85 3.6 RTN 3 - - 25.54 - GPTQ 3 - 3852 8.07 2.7 GPTQ 3 128 4116 6.61 3.0 LLaMA-13B LLaMA-13B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - OOM 5.09 24.2 RTN 4 - - 5.53 - GPTQ 4 - 8410 5.36 6.5 GPTQ 4 128 8747 5.20 6.7 RTN 3 - - 11.40 - GPTQ 3 - 6870 6.63 5.1 GPTQ 3 128 7277 5.62 5.4 LLaMA-33B LLaMA-33B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - OOM 4.10 60.5 RTN 4 - - 4.54 - GPTQ 4 - 19493 4.45 15.7 GPTQ 4 128 20570 4.23 16.3 RTN 3 - - 14.89 - GPTQ 3 - 15493 5.69 12.0 GPTQ 3 128 16566 4.80 13.0 LLaMA-65B LLaMA-65B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - OOM 3.53 121.0 RTN 4 - - 3.92 - GPTQ 4 - OOM 3.84 31.1 GPTQ 4 128 OOM 3.65 32.3 RTN 3 - - 10.59 - GPTQ 3 - OOM 5.04 23.6 GPTQ 3 128 OOM 4.17 25.6Quantization requires a large amount of CPU memory. However, the memory required can be reduced by using swap memory.
Depending on the GPUs/drivers, there may be a difference in performance, which decreases as the model size increases.(IST-DASLab/gptq#1)
According to GPTQ paper, As the size of the model increases, the difference in performance between FP16 and GPTQ decreases.
LLaMA-7B(click me) LLaMA-13B LLaMA-33BIf you don't have conda, install it first.
conda create --name gptq python=3.9 -y
conda activate gptq
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
# Or, if you're having trouble with conda, use pip with python3.9:
# pip3 install torch torchvision torchaudio
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
cd GPTQ-for-LLaMa
pip install -r requirements.txt
torch
: tested on v2.0.0+cu117transformers
: tested on v4.28.0.dev0datasets
: tested on v2.10.1safetensors
: tested on v0.3.0All experiments were run on a single NVIDIA RTX3090.
#convert LLaMA to hf
python convert_llama_weights_to_hf.py --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir ./llama-hf
# Benchmark language generation with 4-bit LLaMA-7B:
# Save compressed model
CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save llama7b-4bit-128g.pt
# Or save compressed `.safetensors` model
CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors llama7b-4bit-128g.safetensors
# Benchmark generating a 2048 token sequence with the saved model
CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --benchmark 2048 --check
# Benchmark FP16 baseline, note that the model will be split across all listed GPUs
CUDA_VISIBLE_DEVICES=0,1,2,3,4 python llama.py ${MODEL_DIR} c4 --benchmark 2048 --check
# model inference with the saved model
CUDA_VISIBLE_DEVICES=0 python llama_inference.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama"
# model inference with the saved model using safetensors loaded direct to gpu
CUDA_VISIBLE_DEVICES=0 python llama_inference.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.safetensors --text "this is llama" --device=0
# model inference with the saved model with offload(This is very slow).
CUDA_VISIBLE_DEVICES=0 python llama_inference_offload.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama" --pre_layer 16
It takes about 180 seconds to generate 45 tokens(5->50 tokens) on single RTX3090 based on LLaMa-65B. pre_layer is set to 50.
Basically, 4-bit quantization and 128 groupsize are recommended.
You can also export quantization parameters with toml+numpy format.
CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --quant-directory ${TOML_DIR}
This code is based on GPTQ
Thanks to Meta AI for releasing LLaMA, a powerful LLM.
Triton GPTQ kernel code is based on GPTQ-triton
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4