A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/qwopqwop200/GPTQ-for-LLaMa below:

qwopqwop200/GPTQ-for-LLaMa: 4 bits quantization of LLaMA using GPTQ

I am currently focusing on AutoGPTQ and recommend using AutoGPTQ instead of GPTQ for Llama.

4 bits quantization of LLaMA using GPTQ

GPTQ is SOTA one-shot weight quantization method

It can be used universally, but it is not the fastest and only supports linux.

Triton only supports Linux, so if you are a Windows user, please use WSL2.

AutoGPTQ-triton, a packaged version of GPTQ with triton, has been integrated into AutoGPTQ.

LLaMA-7B(click me) LLaMA-7B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - 13940 5.68 12.5 RTN 4 - - 6.29 - GPTQ 4 - 4740 6.09 3.5 GPTQ 4 128 4891 5.85 3.6 RTN 3 - - 25.54 - GPTQ 3 - 3852 8.07 2.7 GPTQ 3 128 4116 6.61 3.0 LLaMA-13B LLaMA-13B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - OOM 5.09 24.2 RTN 4 - - 5.53 - GPTQ 4 - 8410 5.36 6.5 GPTQ 4 128 8747 5.20 6.7 RTN 3 - - 11.40 - GPTQ 3 - 6870 6.63 5.1 GPTQ 3 128 7277 5.62 5.4 LLaMA-33B LLaMA-33B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - OOM 4.10 60.5 RTN 4 - - 4.54 - GPTQ 4 - 19493 4.45 15.7 GPTQ 4 128 20570 4.23 16.3 RTN 3 - - 14.89 - GPTQ 3 - 15493 5.69 12.0 GPTQ 3 128 16566 4.80 13.0 LLaMA-65B LLaMA-65B Bits group-size memory(MiB) Wikitext2 checkpoint size(GB) FP16 16 - OOM 3.53 121.0 RTN 4 - - 3.92 - GPTQ 4 - OOM 3.84 31.1 GPTQ 4 128 OOM 3.65 32.3 RTN 3 - - 10.59 - GPTQ 3 - OOM 5.04 23.6 GPTQ 3 128 OOM 4.17 25.6

Quantization requires a large amount of CPU memory. However, the memory required can be reduced by using swap memory.

Depending on the GPUs/drivers, there may be a difference in performance, which decreases as the model size increases.(IST-DASLab/gptq#1)

According to GPTQ paper, As the size of the model increases, the difference in performance between FP16 and GPTQ decreases.

LLaMA-7B(click me) LLaMA-13B LLaMA-33B

If you don't have conda, install it first.

conda create --name gptq python=3.9 -y
conda activate gptq
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
# Or, if you're having trouble with conda, use pip with python3.9:
# pip3 install torch torchvision torchaudio

git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
cd GPTQ-for-LLaMa
pip install -r requirements.txt

All experiments were run on a single NVIDIA RTX3090.

#convert LLaMA to hf
python convert_llama_weights_to_hf.py --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir ./llama-hf

# Benchmark language generation with 4-bit LLaMA-7B:

# Save compressed model
CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save llama7b-4bit-128g.pt

# Or save compressed `.safetensors` model
CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors llama7b-4bit-128g.safetensors

# Benchmark generating a 2048 token sequence with the saved model
CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --benchmark 2048 --check

# Benchmark FP16 baseline, note that the model will be split across all listed GPUs
CUDA_VISIBLE_DEVICES=0,1,2,3,4 python llama.py ${MODEL_DIR} c4 --benchmark 2048 --check

# model inference with the saved model
CUDA_VISIBLE_DEVICES=0 python llama_inference.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama"

# model inference with the saved model using safetensors loaded direct to gpu
CUDA_VISIBLE_DEVICES=0 python llama_inference.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.safetensors --text "this is llama" --device=0

# model inference with the saved model with offload(This is very slow).
CUDA_VISIBLE_DEVICES=0 python llama_inference_offload.py ${MODEL_DIR} --wbits 4 --groupsize 128 --load llama7b-4bit-128g.pt --text "this is llama" --pre_layer 16
It takes about 180 seconds to generate 45 tokens(5->50 tokens) on single RTX3090 based on LLaMa-65B. pre_layer is set to 50.

Basically, 4-bit quantization and 128 groupsize are recommended.

You can also export quantization parameters with toml+numpy format.

CUDA_VISIBLE_DEVICES=0 python llama.py ${MODEL_DIR} c4 --wbits 4 --true-sequential --act-order --groupsize 128 --quant-directory ${TOML_DIR}

This code is based on GPTQ

Thanks to Meta AI for releasing LLaMA, a powerful LLM.

Triton GPTQ kernel code is based on GPTQ-triton


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4