Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model') en2de.translate('Hello world', beam=5) # 'Hallo Welt'
The full documentation contains instructions for getting started, training new models and extending fairseq with new model types and tasks.
We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below, as well as example training and evaluation commands.
fairseq(-py) is MIT-licensed. The license applies to the pre-trained models as well.
@inproceedings{ott2019fairseq, title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling}, author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli}, booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations}, year = {2019}, }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4