It is a plugin to pyexcel and extends its capbility to present and write data in text fromats mainly through tabulate:
Since v0.2.7, json and ndjson input are also supported.
>>> import pyexcel as pe >>> sheet = pe.Sheet() >>> sheet.json = '[[1,2],[2,3]]' >>> sheet pyexcel sheet: +---+---+ | 1 | 2 | +---+---+ | 2 | 3 | +---+---+ >>> highspeedrail = pe.Sheet() >>> highspeedrail.json = """ ... [{"year": 1903, "country": "Germany", "speed": "206.7km/h"}, ... {"year": 1964, "country": "Japan", "speed": "210km/h"}, ... {"year": 2008, "country": "China", "speed": "350km/h"}] ... """ >>> highspeedrail.name = 'High Speed Train Speed Break Through (Source: Wikipedia)' >>> highspeedrail High Speed Train Speed Break Through (Source: Wikipedia): +---------+-----------+------+ | country | speed | year | +---------+-----------+------+ | Germany | 206.7km/h | 1903 | +---------+-----------+------+ | Japan | 210km/h | 1964 | +---------+-----------+------+ | China | 350km/h | 2008 | +---------+-----------+------+ >>> henley_on_thames_facts = pe.Sheet() >>> henley_on_thames_facts.json = """ ... {"area": "5.58 square meters", ... "population": "11,619", ... "civial parish": "Henley-on-Thames", ... "latitude": "51.536", ... "longitude": "-0.898" ... }""" >>> henley_on_thames_facts pyexcel sheet: +--------------------+------------------+----------+-----------+------------+ | area | civial parish | latitude | longitude | population | +--------------------+------------------+----------+-----------+------------+ | 5.58 square meters | Henley-on-Thames | 51.536 | -0.898 | 11,619 | +--------------------+------------------+----------+-----------+------------+ >>> ccs_insight = pe.Sheet() >>> ccs_insight.name = "Worldwide Mobile Phone Shipments (Billions), 2017-2021" >>> ccs_insight.json = """ ... {"year": ["2017", "2018", "2019", "2020", "2021"], ... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90], ... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]}""" >>> ccs_insight pyexcel sheet: +----------------+--------------+------+ | feature phones | smart phones | year | +----------------+--------------+------+ | 0.46 | 1.53 | 2017 | +----------------+--------------+------+ | 0.38 | 1.64 | 2018 | +----------------+--------------+------+ | 0.3 | 1.74 | 2019 | +----------------+--------------+------+ | 0.23 | 1.82 | 2020 | +----------------+--------------+------+ | 0.17 | 1.9 | 2021 | +----------------+--------------+------+
Here is a variant of json:
>>> highspeedrail2 = pe.Sheet() >>> highspeedrail2.ndjson = """ ... {"year": 1903, "country": "Germany", "speed": "206.7km/h"} ... {"year": 1964, "country": "Japan", "speed": "210km/h"} ... {"year": 2008, "country": "China", "speed": "350km/h"} ... """.strip() >>> highspeedrail2.name = 'High Speed Train Speed Break Through (Source: Wikipedia)' >>> highspeedrail2 High Speed Train Speed Break Through (Source: Wikipedia): +---------+-----------+------+ | country | speed | year | +---------+-----------+------+ | Germany | 206.7km/h | 1903 | +---------+-----------+------+ | Japan | 210km/h | 1964 | +---------+-----------+------+ | China | 350km/h | 2008 | +---------+-----------+------+ >>> henley_on_thames_facts2 = pe.Sheet() >>> henley_on_thames_facts2.ndjson = """ ... {"area": "5.58 square meters"} ... {"population": "11,619"} ... {"civial parish": "Henley-on-Thames"} ... {"latitude": "51.536"} ... {"longitude": "-0.898"} ... """.strip() >>> henley_on_thames_facts2 pyexcel sheet: +---------------+--------------------+ | area | 5.58 square meters | +---------------+--------------------+ | population | 11,619 | +---------------+--------------------+ | civial parish | Henley-on-Thames | +---------------+--------------------+ | latitude | 51.536 | +---------------+--------------------+ | longitude | -0.898 | +---------------+--------------------+ >>> ccs_insight2 = pe.Sheet() >>> ccs_insight2.name = "Worldwide Mobile Phone Shipments (Billions), 2017-2021" >>> ccs_insight2.ndjson = """ ... {"year": ["2017", "2018", "2019", "2020", "2021"]} ... {"smart phones": [1.53, 1.64, 1.74, 1.82, 1.90]} ... {"feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]} ... """.strip() >>> ccs_insight2 pyexcel sheet: +----------------+------+------+------+------+------+ | year | 2017 | 2018 | 2019 | 2020 | 2021 | +----------------+------+------+------+------+------+ | smart phones | 1.53 | 1.64 | 1.74 | 1.82 | 1.9 | +----------------+------+------+------+------+------+ | feature phones | 0.46 | 0.38 | 0.3 | 0.23 | 0.17 | +----------------+------+------+------+------+------+
>>> import pyexcel as pe >>> content = [ ... ["Column 1", "Column 2", "Column 3"], ... [1, 2, 3], ... [4, 5, 6], ... [7, 8, 9] ... ] >>> sheet = pe.Sheet(content) >>> print(sheet.simple) pyexcel sheet: -------- -------- -------- Column 1 Column 2 Column 3 1 2 3 4 5 6 7 8 9 -------- -------- -------- >>> sheet.name_columns_by_row(0) >>> print(sheet.simple) pyexcel sheet: Column 1 Column 2 Column 3 ---------- ---------- ---------- 1 2 3 4 5 6 7 8 9
>>> print(sheet.grid) pyexcel sheet: +------------+------------+------------+ | Column 1 | Column 2 | Column 3 | +============+============+============+ | 1 | 2 | 3 | +------------+------------+------------+ | 4 | 5 | 6 | +------------+------------+------------+ | 7 | 8 | 9 | +------------+------------+------------+
>>> multiple_sheets = { ... 'Sheet 1': ... [ ... [1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0], ... [7.0, 8.0, 9.0] ... ], ... 'Sheet 2': ... [ ... ['X', 'Y', 'Z'], ... [1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0] ... ], ... 'Sheet 3': ... [ ... ['O', 'P', 'Q'], ... [3.0, 2.0, 1.0], ... [4.0, 3.0, 2.0] ... ] ... } >>> book = pe.Book(multiple_sheets) >>> book.save_as("myfile.mediawiki") >>> myfile = open("myfile.mediawiki") >>> print(myfile.read()) Sheet 1: {| class="wikitable" style="text-align: left;" |+ <!-- caption --> |- | align="right"| 1 || align="right"| 2 || align="right"| 3 |- | align="right"| 4 || align="right"| 5 || align="right"| 6 |- | align="right"| 7 || align="right"| 8 || align="right"| 9 |} Sheet 2: {| class="wikitable" style="text-align: left;" |+ <!-- caption --> |- | X || Y || Z |- | 1.0 || 2.0 || 3.0 |- | 4.0 || 5.0 || 6.0 |} Sheet 3: {| class="wikitable" style="text-align: left;" |+ <!-- caption --> |- | O || P || Q |- | 3.0 || 2.0 || 1.0 |- | 4.0 || 3.0 || 2.0 |} >>> myfile.close()
>>> book.save_as("myfile.html") >>> myfile = open("myfile.html") >>> print(myfile.read()) # doctest: +SKIP Sheet 1: <table> <tr><td style="text-align: right;">1</td><td style="text-align: right;">2</td><td style="text-align: right;">3</td></tr> <tr><td style="text-align: right;">4</td><td style="text-align: right;">5</td><td style="text-align: right;">6</td></tr> <tr><td style="text-align: right;">7</td><td style="text-align: right;">8</td><td style="text-align: right;">9</td></tr> </table> Sheet 2: <table> <tr><td>X </td><td>Y </td><td>Z </td></tr> <tr><td>1.0</td><td>2.0</td><td>3.0</td></tr> <tr><td>4.0</td><td>5.0</td><td>6.0</td></tr> </table> Sheet 3: <table> <tr><td>O </td><td>P </td><td>Q </td></tr> <tr><td>3.0</td><td>2.0</td><td>1.0</td></tr> <tr><td>4.0</td><td>3.0</td><td>2.0</td></tr> </table>
Please note tabulate 0.7.7 gives an extra tbody tag around tr tag.
.. testcode:: :hide: >>> myfile.close() >>> import os >>> os.unlink("myfile.mediawiki") >>> os.unlink("myfile.html")
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4