π· The Fill-Mask Association Test (ζ©η ε‘«η©Ίθη³»ζ΅ιͺ).
The Fill-Mask Association Test (FMAT) is an integrative and probability-based method using [BERT Models] to measure conceptual associations (e.g., attitudes, biases, stereotypes, social norms, cultural values) as propositions in natural language (Bao, 2024, JPSP).
β οΈ Please update this package to version β₯ 2025.4 for faster and more robust functionality.
Han-Wu-Shuang (Bruce) Bao ε ε―ε΄ι
π¬ baohws@foxmail.com
π psychbruce.github.io
(1) FMAT Package Citationlibrary(FMAT)
for the APA-7 format of the version you installed.The R package FMAT
and three Python packages (transformers
, torch
, huggingface-hub
) all need to be installed.
## Method 1: Install from CRAN install.packages("FMAT") ## Method 2: Install from GitHub install.packages("devtools") devtools::install_github("psychbruce/FMAT", force=TRUE)(2) Python Environment and Packages
Install Anaconda (a recommended package manager that automatically installs Python, its IDEs like Spyder, and a large list of common Python packages).
Specify the Anaconda's Python interpreter in RStudio.
RStudio β Tools β Global/Project Options
β Python β Select β Conda Environments
β Choose ".../Anaconda3/python.exe"
Install specific versions of Python packages "transformers", "torch", and "huggingface-hub".
(RStudio Terminal / Anaconda Prompt / Windows Command)
For CPU users:
pip install transformers==4.40.2 torch==2.2.1 huggingface-hub==0.20.3
For GPU (CUDA) users:
pip install transformers==4.40.2 huggingface-hub==0.20.3
pip install torch==2.2.1 --index-url https://download.pytorch.org/whl/cu121
To use some models (e.g., microsoft/deberta-v3-base
), "You need to have sentencepiece installed to convert a slow tokenizer to a fast one":
pip install sentencepiece
HTTPSConnectionPool(host='huggingface.co', port=443)
, please try to (1) reinstall Anaconda so that some unknown issues may be fixed, or (2) downgrade the "urllib3" package to version β€ 1.25.11 (pip install urllib3==1.25.11
) so that it will use HTTP proxies (rather than HTTPS proxies as in later versions) to connect to Hugging Face.
Use BERT_download()
to download [BERT models]. Model files are saved in your local cache folder "%USERPROFILE%/.cache/huggingface". A full list of BERT models are available at Hugging Face.
Use BERT_info()
and BERT_vocab()
to obtain detailed information of BERT models.
Design queries that conceptually represent the constructs you would measure (see Bao, 2024, JPSP for how to design queries).
Use FMAT_query()
and/or FMAT_query_bind()
to prepare a data.table
of queries.
Use FMAT_run()
to get raw data (probability estimates) for further analysis.
Several steps of preprocessing have been included in the function for easier use (see FMAT_run()
for details).
<mask>
rather than [MASK]
as the mask token, the input query will be automatically modified so that users can always use [MASK]
in query design.\u0120
and \u2581
will be automatically added to match the whole words (rather than subwords) for [MASK]
.By default, the FMAT
package uses CPU to enable the functionality for all users. But for advanced users who want to accelerate the pipeline with GPU, the FMAT_run()
function now supports using a GPU device, about 3x faster than CPU.
Test results (on the developer's computer, depending on BERT model size):
Checklist:
torch
package) with CUDA support.
torch
without CUDA support, please first uninstall it (command: pip uninstall torch
) and then install the suggested one.torch
version supporting CUDA 12.1, the same version of CUDA Toolkit 12.1 may also be installed).Example code for installing PyTorch with CUDA support:
(RStudio Terminal / Anaconda Prompt / Windows Command)
pip install torch==2.2.1 --index-url https://download.pytorch.org/whl/cu121
The reliability and validity of the following 12 BERT models in the FMAT have been established in our research, but future work is needed to examine the performance of other models.
(model name on Hugging Face - model file size)
For details about BERT, see:
library(FMAT) models = c( "bert-base-uncased", "bert-base-cased", "bert-large-uncased", "bert-large-cased", "distilbert-base-uncased", "distilbert-base-cased", "albert-base-v1", "albert-base-v2", "roberta-base", "distilroberta-base", "vinai/bertweet-base", "vinai/bertweet-large" ) BERT_download(models)
βΉ Device Info:
R Packages:
FMAT 2024.5
reticulate 1.36.1
Python Packages:
transformers 4.40.2
torch 2.2.1+cu121
NVIDIA GPU CUDA Support:
CUDA Enabled: TRUE
CUDA Version: 12.1
GPU (Device): NVIDIA GeForce RTX 2050
ββ Downloading model "bert-base-uncased" ββββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 570/570 [00:00<00:00, 114kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 48.0/48.0 [00:00<00:00, 23.9kB/s]
vocab.txt: 100%|ββββββββββ| 232k/232k [00:00<00:00, 1.50MB/s]
tokenizer.json: 100%|ββββββββββ| 466k/466k [00:00<00:00, 1.98MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 440M/440M [00:36<00:00, 12.1MB/s]
β Successfully downloaded model "bert-base-uncased"
ββ Downloading model "bert-base-cased" ββββββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 570/570 [00:00<00:00, 63.3kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 49.0/49.0 [00:00<00:00, 8.66kB/s]
vocab.txt: 100%|ββββββββββ| 213k/213k [00:00<00:00, 1.39MB/s]
tokenizer.json: 100%|ββββββββββ| 436k/436k [00:00<00:00, 10.1MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 436M/436M [00:37<00:00, 11.6MB/s]
β Successfully downloaded model "bert-base-cased"
ββ Downloading model "bert-large-uncased" βββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 571/571 [00:00<00:00, 268kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 48.0/48.0 [00:00<00:00, 12.0kB/s]
vocab.txt: 100%|ββββββββββ| 232k/232k [00:00<00:00, 1.50MB/s]
tokenizer.json: 100%|ββββββββββ| 466k/466k [00:00<00:00, 1.99MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 1.34G/1.34G [01:36<00:00, 14.0MB/s]
β Successfully downloaded model "bert-large-uncased"
ββ Downloading model "bert-large-cased" βββββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 762/762 [00:00<00:00, 125kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 49.0/49.0 [00:00<00:00, 12.3kB/s]
vocab.txt: 100%|ββββββββββ| 213k/213k [00:00<00:00, 1.41MB/s]
tokenizer.json: 100%|ββββββββββ| 436k/436k [00:00<00:00, 5.39MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 1.34G/1.34G [01:35<00:00, 14.0MB/s]
β Successfully downloaded model "bert-large-cased"
ββ Downloading model "distilbert-base-uncased" ββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 483/483 [00:00<00:00, 161kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 48.0/48.0 [00:00<00:00, 9.46kB/s]
vocab.txt: 100%|ββββββββββ| 232k/232k [00:00<00:00, 16.5MB/s]
tokenizer.json: 100%|ββββββββββ| 466k/466k [00:00<00:00, 14.8MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 268M/268M [00:19<00:00, 13.5MB/s]
β Successfully downloaded model "distilbert-base-uncased"
ββ Downloading model "distilbert-base-cased" ββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 465/465 [00:00<00:00, 233kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 49.0/49.0 [00:00<00:00, 9.80kB/s]
vocab.txt: 100%|ββββββββββ| 213k/213k [00:00<00:00, 1.39MB/s]
tokenizer.json: 100%|ββββββββββ| 436k/436k [00:00<00:00, 8.70MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 263M/263M [00:24<00:00, 10.9MB/s]
β Successfully downloaded model "distilbert-base-cased"
ββ Downloading model "albert-base-v1" βββββββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 684/684 [00:00<00:00, 137kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 25.0/25.0 [00:00<00:00, 3.57kB/s]
spiece.model: 100%|ββββββββββ| 760k/760k [00:00<00:00, 4.93MB/s]
tokenizer.json: 100%|ββββββββββ| 1.31M/1.31M [00:00<00:00, 13.4MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 47.4M/47.4M [00:03<00:00, 13.4MB/s]
β Successfully downloaded model "albert-base-v1"
ββ Downloading model "albert-base-v2" βββββββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 684/684 [00:00<00:00, 137kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 25.0/25.0 [00:00<00:00, 4.17kB/s]
spiece.model: 100%|ββββββββββ| 760k/760k [00:00<00:00, 5.10MB/s]
tokenizer.json: 100%|ββββββββββ| 1.31M/1.31M [00:00<00:00, 6.93MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 47.4M/47.4M [00:03<00:00, 13.8MB/s]
β Successfully downloaded model "albert-base-v2"
ββ Downloading model "roberta-base" βββββββββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 481/481 [00:00<00:00, 80.3kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 25.0/25.0 [00:00<00:00, 6.25kB/s]
vocab.json: 100%|ββββββββββ| 899k/899k [00:00<00:00, 2.72MB/s]
merges.txt: 100%|ββββββββββ| 456k/456k [00:00<00:00, 8.22MB/s]
tokenizer.json: 100%|ββββββββββ| 1.36M/1.36M [00:00<00:00, 8.56MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 499M/499M [00:38<00:00, 12.9MB/s]
β Successfully downloaded model "roberta-base"
ββ Downloading model "distilroberta-base" βββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 480/480 [00:00<00:00, 96.4kB/s]
β (2) Downloading tokenizer...
tokenizer_config.json: 100%|ββββββββββ| 25.0/25.0 [00:00<00:00, 12.0kB/s]
vocab.json: 100%|ββββββββββ| 899k/899k [00:00<00:00, 6.59MB/s]
merges.txt: 100%|ββββββββββ| 456k/456k [00:00<00:00, 9.46MB/s]
tokenizer.json: 100%|ββββββββββ| 1.36M/1.36M [00:00<00:00, 11.5MB/s]
β (3) Downloading model...
model.safetensors: 100%|ββββββββββ| 331M/331M [00:25<00:00, 13.0MB/s]
β Successfully downloaded model "distilroberta-base"
ββ Downloading model "vinai/bertweet-base" ββββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 558/558 [00:00<00:00, 187kB/s]
β (2) Downloading tokenizer...
vocab.txt: 100%|ββββββββββ| 843k/843k [00:00<00:00, 7.44MB/s]
bpe.codes: 100%|ββββββββββ| 1.08M/1.08M [00:00<00:00, 7.01MB/s]
tokenizer.json: 100%|ββββββββββ| 2.91M/2.91M [00:00<00:00, 9.10MB/s]
β (3) Downloading model...
pytorch_model.bin: 100%|ββββββββββ| 543M/543M [00:48<00:00, 11.1MB/s]
β Successfully downloaded model "vinai/bertweet-base"
ββ Downloading model "vinai/bertweet-large" βββββββββββββββββββββββββββββββββββββββ
β (1) Downloading configuration...
config.json: 100%|ββββββββββ| 614/614 [00:00<00:00, 120kB/s]
β (2) Downloading tokenizer...
vocab.json: 100%|ββββββββββ| 899k/899k [00:00<00:00, 5.90MB/s]
merges.txt: 100%|ββββββββββ| 456k/456k [00:00<00:00, 7.30MB/s]
tokenizer.json: 100%|ββββββββββ| 1.36M/1.36M [00:00<00:00, 8.31MB/s]
β (3) Downloading model...
pytorch_model.bin: 100%|ββββββββββ| 1.42G/1.42G [02:29<00:00, 9.53MB/s]
β Successfully downloaded model "vinai/bertweet-large"
ββ Downloaded models: ββ
size
albert-base-v1 45 MB
albert-base-v2 45 MB
bert-base-cased 416 MB
bert-base-uncased 420 MB
bert-large-cased 1277 MB
bert-large-uncased 1283 MB
distilbert-base-cased 251 MB
distilbert-base-uncased 256 MB
distilroberta-base 316 MB
roberta-base 476 MB
vinai/bertweet-base 517 MB
vinai/bertweet-large 1356 MB
β Downloaded models saved at C:/Users/Bruce/.cache/huggingface/hub (6.52 GB)
model size vocab dims mask
<fctr> <char> <int> <int> <char>
1: bert-base-uncased 420MB 30522 768 [MASK]
2: bert-base-cased 416MB 28996 768 [MASK]
3: bert-large-uncased 1283MB 30522 1024 [MASK]
4: bert-large-cased 1277MB 28996 1024 [MASK]
5: distilbert-base-uncased 256MB 30522 768 [MASK]
6: distilbert-base-cased 251MB 28996 768 [MASK]
7: albert-base-v1 45MB 30000 128 [MASK]
8: albert-base-v2 45MB 30000 128 [MASK]
9: roberta-base 476MB 50265 768 <mask>
10: distilroberta-base 316MB 50265 768 <mask>
11: vinai/bertweet-base 517MB 64001 768 <mask>
12: vinai/bertweet-large 1356MB 50265 1024 <mask>
(Tested 2024-05-16 on the developer's computer: HP Probook 450 G10 Notebook PC)
While the FMAT is an innovative method for the computational intelligent analysis of psychology and society, you may also seek for an integrative toolbox for other text-analytic methods. Another R package I developed---PsychWordVec---is useful and user-friendly for word embedding analysis (e.g., the Word Embedding Association Test, WEAT). Please refer to its documentation and feel free to use it.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4