The R package “multiness” implements model fitting and simulation for Gaussian and logistic inner product MultiNeSS models for multiplex networks. The package uses a convex fitting algorithm with fully adaptive parameter tuning, including options for edge cross-validation. For more details see MacDonald et al., (2022).
You can install “multiness” version 1.0.2 from CRAN using
install.packages("multiness")
You can install the development version of “multiness” from GitHub using
devtools::install_github("peterwmacd/multiness")
“multiness” includes an example multiplex network of agricultural trade which is studied in MacDonald et al., (2022). It is easy to import and to fit a Gaussian MultiNeSS model with adaptive tuning.
library(multiness) # import data data(agri_trade) dim(agri_trade) #> [1] 145 145 13 # log transformation for edge weights A <- log(1+agri_trade) # model fit fit <- multiness_fit(A,model="gaussian",self_loops=FALSE, tuning="adaptive",tuning_opts=list(penalty_const=3), optim_opts=list(max_rank=100,return_posns=TRUE)) # inspect fitted latent space dimensions # common latent space fit$d1 #> [1] 30 # individual latent spaces fit$d2 #> [1] 2 4 4 3 4 8 5 5 16 11 4 12 6 # plot first two common latent dimensions plot(fit$V_hat[,1:2],main="Common latent dimensions", xlab="v1",ylab="v2",xlim=c(0,4.5)) # label a subset of the points countries <- dimnames(A)[[1]] do_label <- c(4,5,8,10,11,14,17,19,20,24,25,28,33,34,35,37,39,41,54,61,75) text(fit$V_hat[do_label,1],fit$V_hat[do_label,2], labels=countries[do_label],pos=4,cex=.8)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4