In [29]: from sqlalchemy import create_engine ...: engine = create_engine('sqlite://') ...: df=pd.DataFrame([[1,'John P. Doe'],[2,'Jane Dove'],[1,'John P. Doe']], ...: columns=['person_id','person_name']) ...: df.to_sql('data1',engine) ...: df['person_name']=pd.Categorical(df.person_name) ...: df.to_sql('data2',engine) ...: print pd.read_sql_table('data1',engine) ...: print pd.read_sql_table('data2',engine) index person_id person_name 0 0 1 John P. Doe 1 1 2 Jane Dove 2 2 1 John P. Doe index person_id person_name 0 0 1 J 1 1 2 o 2 2 1 h
using relational db to store catagorical columns in seperare tables would be very cool, and rebuilding the frame in pandas by JOIN from the multiple tables would save time on the wire. also memory if categorical was build directly.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4