I ran into this unexplained behaviour with groupby
when using group_keys=True
(the default),
it's not clear why using x
vs. x[:]
causes the group_keys
argument to be ignored.
In [86]: df = DataFrame({'key': [1, 1, 1, 2, 2, 2, 3, 3, 3], ...: 'value': range(9)}) ...: df Out[86]: key value 0 1 0 1 1 1 2 1 2 3 2 3 4 2 4 5 2 5 6 3 6 7 3 7 8 3 8 In [87]: df.groupby('key', group_keys=True).apply(lambda x: x[:].key) Out[87]: key 1 0 1 1 1 2 1 2 3 2 4 2 5 2 3 6 3 7 3 8 3 Name: key, dtype: int64 In [88]: df.groupby('key', group_keys=True).apply(lambda x: x.key) Out[88]: 0 1 1 1 2 1 3 2 4 2 5 2 6 3 7 3 8 3 Name: key, dtype: int64
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4