Should this work?
In [70]: cat = pd.Categorical(['a', 'b', 'c']) In [71]: obj = pd.Series(['a', 'b', 'c']) In [72]: num = pd.Series([1, 2, 3]) In [73]: df = pd.concat([pd.Series(cat), obj, num], axis=1, keys=['cat', 'obj', 'num']) In [74]: df Out[74]: cat obj num 0 a a 1 1 b b 2 2 c c 3 In [75]: df.dtypes Out[75]: cat category obj object num int64 dtype: object In [76]: df.dtypes == 'category' --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <ipython-input-76-48fb3d0c49cf> in <module>() ----> 1 df.dtypes == 'category' /Users/tom/Envs/py3/lib/python3.4/site-packages/pandas-0.14.1_291_g7a8a030-py3.4-macosx-10.9-x86_64.egg/pandas/core/ops.py in wrapper(self, other) 579 580 # scalars --> 581 res = na_op(values, other) 582 if np.isscalar(res): 583 raise TypeError('Could not compare %s type with Series' /Users/tom/Envs/py3/lib/python3.4/site-packages/pandas-0.14.1_291_g7a8a030-py3.4-macosx-10.9-x86_64.egg/pandas/core/ops.py in na_op(x, y) 526 msg = "Cannot compare a Categorical for op {op} with type {typ}. If you want to \n" \ 527 "compare values, use 'series <op> np.asarray(cat)'." --> 528 raise TypeError(msg.format(op=op,typ=type(y))) 529 if x.dtype == np.object_: 530 if isinstance(y, list): TypeError: Cannot compare a Categorical for op <built-in function eq> with type <class 'str'>. If you want to compare values, use 'series <op> np.asarray(cat)'.
For comparison
In [77]: df.dtypes == 'object' Out[77]: cat False obj True num False dtype: bool In [78]: df.dtypes == 'int64' Out[78]: cat False obj False num True dtype: bool
This doesn't work either: In [87]: df.dtypes == df.cat.dtype
(raise the same TypeError)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4