I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
In [1]: to_datetime([Timestamp('2020').tz_localize('Europe/London'), Timestamp('2020').tz_localize('US/Pacific')], errors='ignore') --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[1], line 1 ----> 1 to_datetime([Timestamp('2020').tz_localize('Europe/London'), Timestamp('2020').tz_localize('US/Pacific')], errors='ignore') File ~/pandas-dev/pandas/core/tools/datetimes.py:1063, in to_datetime(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache) 1061 result = _convert_and_box_cache(argc, cache_array) 1062 else: -> 1063 result = convert_listlike(argc, format) 1064 else: 1065 result = convert_listlike(np.array([arg]), format)[0] File ~/pandas-dev/pandas/core/tools/datetimes.py:437, in _convert_listlike_datetimes(arg, format, name, utc, unit, errors, dayfirst, yearfirst, exact) 434 if format is not None: 435 return _array_strptime_with_fallback(arg, name, utc, format, exact, errors) --> 437 result, tz_parsed = objects_to_datetime64ns( 438 arg, 439 dayfirst=dayfirst, 440 yearfirst=yearfirst, 441 utc=utc, 442 errors=errors, 443 allow_object=True, 444 ) 446 if tz_parsed is not None: 447 # We can take a shortcut since the datetime64 numpy array 448 # is in UTC 449 dta = DatetimeArray(result, dtype=tz_to_dtype(tz_parsed)) File ~/pandas-dev/pandas/core/arrays/datetimes.py:2158, in objects_to_datetime64ns(data, dayfirst, yearfirst, utc, errors, allow_object) 2156 order: Literal["F", "C"] = "F" if flags.f_contiguous else "C" 2157 try: -> 2158 result, tz_parsed = tslib.array_to_datetime( 2159 data.ravel("K"), 2160 errors=errors, 2161 utc=utc, 2162 dayfirst=dayfirst, 2163 yearfirst=yearfirst, 2164 ) 2165 result = result.reshape(data.shape, order=order) 2166 except OverflowError as err: 2167 # Exception is raised when a part of date is greater than 32 bit signed int File ~/pandas-dev/pandas/_libs/tslib.pyx:441, in pandas._libs.tslib.array_to_datetime() 439 @cython.wraparound(False) 440 @cython.boundscheck(False) --> 441 cpdef array_to_datetime( 442 ndarray[object] values, 443 str errors="raise", File ~/pandas-dev/pandas/_libs/tslib.pyx:521, in pandas._libs.tslib.array_to_datetime() 519 else: 520 found_naive = True --> 521 tz_out = convert_timezone( 522 val.tzinfo, 523 tz_out, File ~/pandas-dev/pandas/_libs/tslibs/conversion.pyx:725, in pandas._libs.tslibs.conversion.convert_timezone() 723 "datetime64 unless utc=True") 724 elif tz_out is not None and not tz_compare(tz_out, tz_in): --> 725 raise ValueError("Tz-aware datetime.datetime " 726 "cannot be converted to " 727 "datetime64 unless utc=True") ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True In [2]: to_datetime([Timestamp('2020').tz_localize('Europe/London'), Timestamp('2020').tz_localize('US/Pacific')], errors='ignore', format='%Y-%m ...: -%d') Out[2]: Index([2020-01-01 00:00:00+00:00, 2020-01-01 00:00:00-08:00], dtype='object')Issue Description
It shouldn't raise with errors='ignore'
Index([2020-01-01 00:00:00+00:00, 2020-01-01 00:00:00-08:00], dtype='object')
Installed Versions INSTALLED VERSIONScommit : 8acd314
python : 3.8.16.final.0
python-bits : 64
OS : Linux
OS-release : 5.10.102.1-microsoft-standard-WSL2
Version : #1 SMP Wed Mar 2 00:30:59 UTC 2022
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : en_GB.UTF-8
pandas : 2.0.0.dev0+1049.g8acd31495a
numpy : 1.23.5
pytz : 2022.7
dateutil : 2.8.2
setuptools : 65.6.3
pip : 22.3.1
Cython : 0.29.32
pytest : 7.2.0
hypothesis : 6.61.0
sphinx : 5.3.0
blosc : 1.11.1
feather : None
xlsxwriter : 3.0.6
lxml.etree : 4.9.2
html5lib : 1.1
pymysql : 1.0.2
psycopg2 : 2.9.5
jinja2 : 3.1.2
IPython : 8.8.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : 1.3.5
brotli :
fastparquet : 2022.12.0
fsspec : 2022.11.0
gcsfs : 2022.11.0
matplotlib : 3.6.2
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 10.0.1
pyreadstat : 1.2.0
pyxlsb : 1.0.10
s3fs : 2022.11.0
scipy : 1.10.0
snappy :
sqlalchemy : 1.4.46
tables : 3.8.0
tabulate : 0.9.0
xarray : 2022.12.0
xlrd : 2.0.1
zstandard : 0.19.0
tzdata : 2022.7
qtpy : None
pyqt5 : None
None
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4