A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/orgadish/deduped below:

orgadish/deduped: Make functions act on deduplicated vector inputs

deduped contains one main function deduped() which speeds up slow, vectorized functions by only performing computations on the unique values of the input and expanding the results at the end.

One particular use case of deduped() that I come across a lot is when using basename() and dirname() on the file_path column after reading multiple CSVs (e.g. with readr::read_csv(..., id="file_path")). basename() and dirname() are surprisingly slow (especially on Windows), and most of the column is duplicated.

You can install the released version of deduped from CRAN with:

install.packages("deduped")

And the development version from GitHub:

if(!requireNamespace("remotes")) install.packages("remotes")

remotes::install_github("orgadish/deduped")
library(deduped)
set.seed(0)

slow_func <- function(ii) {
  for (i in ii) {
    Sys.sleep(0.0005)
  }
}
unique_vec <- sample(LETTERS, 5)
unique_vec
#> [1] "N" "Y" "D" "G" "A"

# Create a vector with significant duplication.
duplicated_vec <- sample(rep(unique_vec, 50))
length(duplicated_vec)
#> [1] 250

system.time({  x1 <- slow_func(duplicated_vec)  })
#>    user  system elapsed 
#>    0.00    0.00    3.87
system.time({  x2 <- deduped(slow_func)(duplicated_vec)  })
#>    user  system elapsed 
#>    0.07    0.05    0.19

all.equal(x1, x2)
#> [1] TRUE

deduped() can also be combined with lapply() or purrr::map().

unique_list <- lapply(1:3, function(j) sample(LETTERS, j, replace = TRUE))
str(unique_list)
#> List of 3
#>  $ : chr "E"
#>  $ : chr [1:2] "L" "O"
#>  $ : chr [1:3] "N" "O" "Q"

# Create a list with significant duplication.
duplicated_list <- sample(rep(unique_list, 50)) 
length(duplicated_list)
#> [1] 150

system.time({  y1 <- lapply(duplicated_list, slow_func)  })
#>    user  system elapsed 
#>    0.00    0.00    4.66
system.time({  y2 <- deduped(lapply)(duplicated_list, slow_func)  })
#>    user  system elapsed 
#>     0.0     0.0     0.1

all.equal(y1, y2)
#> [1] TRUE
Specific example: deduped(basename)() on file paths

Note: Times shown below are based on running R 4.3.2 on Windows 10, for which basename() is known to be slow: Bug 18597.

# Create multiple CSVs to read
tf <- withr::local_tempdir()

# Duplicate mtcars 10,000x and write 1 CSV for each value of `am`
duplicated_mtcars <- dplyr::slice(mtcars, rep(1:nrow(mtcars), 10000))
invisible(sapply(
  dplyr::group_split(duplicated_mtcars, am),
  function(dat) {
    file_name <- paste0("mtcars_", unique(dat$am), ".csv")
    readr::write_csv(dat, file.path(tf, file_name))
  }
))

# Read the separate files back in.
mtcars_files <- list.files(tf, full.names = TRUE)
length(mtcars_files)
#> [1] 2

duplicated_mtcars_from_files <- readr::read_csv(
  mtcars_files,
  id = "file_path",
  show_col_types = FALSE
)
dplyr::count(duplicated_mtcars_from_files, basename(file_path))
#> # A tibble: 2 × 2
#>   `basename(file_path)`      n
#>   <chr>                  <int>
#> 1 mtcars_0.csv          190000
#> 2 mtcars_1.csv          130000

# Original: slow
system.time({
  df1 <- dplyr::mutate(
    duplicated_mtcars_from_files,
    file_name = basename(file_path)
  )
})
#>    user  system elapsed 
#>    2.94    0.04    2.97

# Deduped: fast
system.time({
  df2 <- dplyr::mutate(
    duplicated_mtcars_from_files,
    file_name = deduped(basename)(file_path)
  )
})
#>    user  system elapsed 
#>       0       0       0

all.equal(df1, df2)
#> [1] TRUE

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4