A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/openpharma/rbmiUtils below:

openpharma/rbmiUtils: Repository for the development of the rbmiUtils package which extends the {rbmi} package for use within clinical trials.

rbmiUtils

rbmiUtils extends the functionality of rbmi to support more streamlined workflows for multiple imputation in clinical trials. It is designed to simplify key tasks such as analysis execution, pooling, result tidying, and imputed data handling.

You can install the development version of rbmiUtils from cran or GitHub:

Type Source Command Release CRAN install.packages("rbmiUtils") Development GitHub remotes::install_github("openpharma/rbmiUtils")

This example shows how to run a covariate-adjusted ANCOVA on imputed datasets using Bayesian multiple imputation:

library(dplyr)
library(rbmi)
library(rbmiUtils)

data("ADMI")

# Setup
N_IMPUTATIONS <- 100
WARMUP <- 200
THIN <- 5

# Preprocessing
ADMI <- ADMI %>%
  mutate(
    TRT = factor(TRT, levels = c("Placebo", "Drug A")),
    USUBJID = factor(USUBJID),
    AVISIT = factor(AVISIT)
  )

# Define analysis variables
vars <- set_vars(
  subjid = "USUBJID",
  visit = "AVISIT",
  group = "TRT",
  outcome = "CHG",
  covariates = c("BASE", "STRATA", "REGION")
)

# Specify imputation method
method <- rbmi::method_bayes(
  n_samples = N_IMPUTATIONS,
  control = rbmi::control_bayes(
    warmup = WARMUP,
    thin = THIN
  )
)

# Run analysis
ana_obj <- analyse_mi_data(
  data = ADMI,
  vars = vars,
  method = method,
  fun = ancova
)

# Pool results and tidy
pool_obj <- pool(ana_obj)
tidy_df <- tidy_pool_obj(pool_obj)

# View results
print(tidy_df)
#> # A tibble: 6 × 10
#>   parameter       description visit parameter_type lsm_type     est    se    lci
#>   <chr>           <chr>       <chr> <chr>          <chr>      <dbl> <dbl>  <dbl>
#> 1 trt_Week 24     Treatment … Week… trt            <NA>     -2.17   0.182 -2.53 
#> 2 lsm_ref_Week 24 Least Squa… Week… lsm            ref       0.0782 0.131 -0.179
#> 3 lsm_alt_Week 24 Least Squa… Week… lsm            alt      -2.09   0.126 -2.34 
#> 4 trt_Week 48     Treatment … Week… trt            <NA>     -3.81   0.256 -4.31 
#> 5 lsm_ref_Week 48 Least Squa… Week… lsm            ref       0.0481 0.185 -0.316
#> 6 lsm_alt_Week 48 Least Squa… Week… lsm            alt      -3.76   0.176 -4.11 
#> # ℹ 2 more variables: uci <dbl>, pval <dbl>

The package includes two example datasets for demonstrating imputation and analysis:

Use ?ADEFF and ?ADMI to view full dataset documentation.

Key exported functions include:

These utilities wrap standard rbmi workflows for improved reproducibility and interpretability.

This package is experimental and under active development. Feedback and contributions are welcome via GitHub issues or pull requests.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4