A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/open-mmlab/mmocr below:

open-mmlab/mmocr: OpenMMLab Text Detection, Recognition and Understanding Toolbox

English | įŽ€äŊ“中文

The default branch is now main and the code on the branch has been upgraded to v1.0.0. The old main branch (v0.6.3) code now exists on the 0.x branch. If you have been using the main branch and encounter upgrade issues, please read the Migration Guide and notes on Branches .

v1.0.0 was released in 2023-04-06. Major updates from 1.0.0rc6 include:

  1. Support for SCUT-CTW1500, SynthText, and MJSynth datasets in Dataset Preparer
  2. Updated FAQ and documentation
  3. Deprecation of file_client_args in favor of backend_args
  4. Added a new MMOCR tutorial notebook

To know more about the updates in MMOCR 1.0, please refer to What's New in MMOCR 1.x, or Read Changelog for more details!

MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the corresponding downstream tasks including key information extraction. It is part of the OpenMMLab project.

The main branch works with PyTorch 1.6+.

MMOCR depends on PyTorch, MMEngine, MMCV and MMDetection. Below are quick steps for installation. Please refer to Install Guide for more detailed instruction.

conda create -n open-mmlab python=3.8 pytorch=1.10 cudatoolkit=11.3 torchvision -c pytorch -y
conda activate open-mmlab
pip3 install openmim
git clone https://github.com/open-mmlab/mmocr.git
cd mmocr
mim install -e .

Please see Quick Run for the basic usage of MMOCR.

Supported algorithms:

BackBone Text Detection Text Recognition Key Information Extraction Text Spotting

Please refer to model_zoo for more details.

Here are some implementations of SOTA models and solutions built on MMOCR, which are supported and maintained by community users. These projects demonstrate the best practices based on MMOCR for research and product development. We welcome and appreciate all the contributions to OpenMMLab ecosystem.

We appreciate all contributions to improve MMOCR. Please refer to CONTRIBUTING.md for the contributing guidelines.

MMOCR is an open-source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We hope the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new OCR methods.

If you find this project useful in your research, please consider cite:

@article{mmocr2022,
    title={MMOCR:  A Comprehensive Toolbox for Text Detection, Recognition and Understanding},
    author={MMOCR Developer Team},
    howpublished = {\url{https://github.com/open-mmlab/mmocr}},
    year={2022}
}

This project is released under the Apache 2.0 license.

Welcome to the OpenMMLab community

Scan the QR code below to follow the OpenMMLab team's Zhihu Official Account and join the OpenMMLab team's QQ Group, or join the official communication WeChat group by adding the WeChat, or join our Slack

We will provide you with the OpenMMLab community

The OpenMMLab community looks forward to your participation! đŸ‘Ŧ


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4