A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/nvietto/samplezoo below:

nvietto/samplezoo: Generate Samples with a Variety of Probability Distributions

samplezoo

The {samplezoo} package simplifies the generation of samples from various probability distributions, enabling users to quickly create datasets for demonstrations, troubleshooting, or teaching. By prioritizing simplicity and speed over the customization of sample parameters, {samplezoo} is ideal for beginners or anyone looking to save time when working with data.

{samplezoo} is available on CRAN. Install using:

install.packages("samplezoo")

You can install the development version of samplezoo from GitHub with:

# install.packages("pak")
pak::pak("nvietto/samplezoo")

Generating a dataset with various probability distributions typically looks like this:

numeric_data <- data.frame(
      norm = rnorm(n = 100, mean = 50, sd = 15),
      norm_2 = rnorm(n = 100, mean = 60, sd = 10),
      norm_3 = rnorm(n = 100, mean = 40, sd = 20),
      bern = rbinom(n = 100, size = 1, prob = 0.50),
      neg = rnbinom(n = 100, size = 1, prob = 0.50),
      pois = rpois(n = 100, lambda = 3),
      exp = rexp(n = 100, rate = 0.10),
      unif = runif(n = 100, min = 0, max = 1),
      beta = rbeta(n = 100, shape1 = 2, shape2 = 5),
      gamma = rgamma(n = 100, shape = 2, scale = 2),
      chi_sq = rchisq(n = 100, df = 2),
      t_dist = rt(n = 100, df = 10),
      f_dist =rf(n = 100, df1 = 10, df2 = 10)
)

numeric_data <- round(numeric_data, 2)

head(numeric_data)
  norm norm_2 norm_3 bern neg pois   exp unif beta gamma chi_sq t_dist f_dist
1 63.81  57.53   7.04    0   2    4  0.75 0.96 0.05  3.12   2.18   1.60   2.24
2 66.55  55.87  32.81    1   0    4  0.62 0.63 0.52  5.61   4.85   0.62   2.51
3 53.37  55.03  54.22    1   8    2  9.68 0.17 0.26  3.74   0.14   0.12   1.06
4 57.02  65.00  29.82    0   0    3 46.11 0.44 0.28  1.72   1.82  -0.19   0.97
5 57.61  76.56  39.52    1   0    2 11.92 0.51 0.27  7.96   0.37  -0.05   2.06
6 52.06  72.36  84.90    0   1    3  2.74 0.19 0.02  2.42   9.40  -0.02   0.65

With {samplezoo}, you can use one line of code:

library(samplezoo)

small_data <- samplezoo("small")

small_data <- round(small_data, 2)

head(small_data)
    norm norm_2 norm_3 bern neg pois   exp unif beta gamma chi_sq t_dist f_dist
1  59.92  79.47  22.58    0   0    5  5.40 0.97 0.62 10.03   8.26   0.40   1.66
2  51.84  59.95  24.17    0   0    6  0.85 0.56 0.07  0.83   8.05   0.30   1.34
3  32.53  57.29  54.40    1   2    1  1.51 0.33 0.21  3.99   7.48  -0.86   0.53
4  69.13  52.97  44.06    1   0    4 10.04 0.94 0.17  1.45  10.28   1.31   2.33
5  47.54  78.79  51.02    1   1    4  3.34 0.53 0.50  1.44   9.47   1.41   1.76
6  59.90  53.15  49.71    1   0    2 20.85 0.93 0.36  8.23   2.97  -1.55   0.80

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4