A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/mrdimosthenis/synapses.js below:

mrdimosthenis/synapses.js: A neural networks library for JavaScript

A neural networks library for JavaScript!

const syn = require('synapses');
Create a random neural network by providing its layer sizes
let randNet = new syn.Net({layers: [2, 3, 1]});
Get the json of the random neural network
randNet.json();
// "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}" +
// " ,{\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}," +
// "  {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}]," +
// "[{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"
Create a neural network by providing its json
let net = new syn.Net({
    json:
        "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}" +
        " ,{\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}," +
        "  {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}]," +
        " [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"
});
net.predict([0.2, 0.6]);
// [ 0.49131100324012494 ]
net.fit(0.1, [0.2, 0.6], [0.9]);

The fit method adjusts the weights of the neural network to a single observation.

In practice, for a neural network to be fully trained, it should be fitted with multiple observations.

Create a neural network for testing
new syn.Net({layers: [2, 3, 1], seed: 1000});

We can provide a seed to create a non-random neural network. This way, we can use it for testing.

Define the activation functions and the weights
function activation(layerIndex) {
    switch (layerIndex) {
        case 0:
            return syn.fun.SIGMOID;
        case 1:
            return syn.fun.IDENTITY;
        case 2:
            return syn.fun.LEAKY_RE_LU;
        case 3:
            return syn.fun.TANH;
    }
}

function weight(_layerIndex) {
    return 1.0 - 2.0 * Math.random();
}

let customNet = new syn.Net({
    layers: [4, 6, 8, 5, 3],
    activation: activation,
    weight: weight
});

If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.

With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

Measure the difference between the expected and predicted values
let expAndPredVals = [
    [[0.0, 0.0, 1.0], [0.0, 0.1, 0.9]],
    [[0.0, 1.0, 0.0], [0.8, 0.2, 0.0]],
    [[1.0, 0.0, 0.0], [0.7, 0.1, 0.2]],
    [[1.0, 0.0, 0.0], [0.3, 0.3, 0.4]],
    [[0.0, 0.0, 1.0], [0.2, 0.2, 0.6]]
];
syn.stats.rmse(expAndPredVals);
// 0.6957010852370435
syn.stats.score(expAndPredVals);
// 0.6
Create a Codec by providing the attributes and the data points

You can use a codec to encode and decode a data point.

let setosa = {
    petal_length: "1.5",
    petal_width: "0.1",
    sepal_length: "4.9",
    sepal_width: "3.1",
    species: "setosa"
};

let versicolor = {
    petal_length: "3.8",
    petal_width: "1.1",
    sepal_length: "5.5",
    sepal_width: "2.4",
    species: "versicolor"
};

let virginica = {
    petal_length: "6.0",
    petal_width: "2.2",
    sepal_length: "5.0",
    sepal_width: "1.5",
    species: "virginica"
};

let dataset = [setosa, versicolor, virginica];

let attributes = [
    ["petal_length", false],
    ["petal_width", false],
    ["sepal_length", false],
    ["sepal_width", false],
    ["species", true],
];

let codec = new syn.Codec({attributes: attributes, data: dataset});
Get the json of the codec
let codecJson = codec.json();
// "[{\"Case\" : \"SerializableContinuous\", " +
//   "\"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]}," +
//  "{\"Case\" : \"SerializableContinuous\", " +
//   "\"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]}," +
//  "{\"Case\" : \"SerializableContinuous\", " +
//   "\"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]}," +
//  "{\"Case\" : \"SerializableContinuous\", " +
//   "\"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]}," +
//  "{\"Case\" : \"SerializableDiscrete\", " +
//   "\"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]"
Create a Codec by providing its json
new syn.Codec({json: codecJson})
let encodedSetosa = codec.encode(setosa);
// [ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0 ]
codec.decode(encodedSetosa);
// {
//     petal_length: "1.5",
//     petal_width: "0.1",
//     sepal_length: "4.9",
//     sepal_width: "3.1",
//     species: "setosa"
// }

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4