A neural networks library for JavaScript!
const syn = require('synapses');Create a random neural network by providing its layer sizes
let randNet = new syn.Net({layers: [2, 3, 1]});
randNet.json(); // "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}" + // " ,{\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}," + // " {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}]," + // "[{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"Create a neural network by providing its json
let net = new syn.Net({ json: "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}" + " ,{\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}," + " {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}]," + " [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]" });
net.predict([0.2, 0.6]); // [ 0.49131100324012494 ]
net.fit(0.1, [0.2, 0.6], [0.9]);
The fit
method adjusts the weights of the neural network to a single observation.
In practice, for a neural network to be fully trained, it should be fitted with multiple observations.
Create a neural network for testingnew syn.Net({layers: [2, 3, 1], seed: 1000});
We can provide a seed
to create a non-random neural network. This way, we can use it for testing.
function activation(layerIndex) { switch (layerIndex) { case 0: return syn.fun.SIGMOID; case 1: return syn.fun.IDENTITY; case 2: return syn.fun.LEAKY_RE_LU; case 3: return syn.fun.TANH; } } function weight(_layerIndex) { return 1.0 - 2.0 * Math.random(); } let customNet = new syn.Net({ layers: [4, 6, 8, 5, 3], activation: activation, weight: weight });
activation
function accepts the index of a layer and returns an activation function for its neurons.weight
function accepts the index of a layer and returns a weight for the synapses of its neurons.If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.
With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.
Measure the difference between the expected and predicted valueslet expAndPredVals = [ [[0.0, 0.0, 1.0], [0.0, 0.1, 0.9]], [[0.0, 1.0, 0.0], [0.8, 0.2, 0.0]], [[1.0, 0.0, 0.0], [0.7, 0.1, 0.2]], [[1.0, 0.0, 0.0], [0.3, 0.3, 0.4]], [[0.0, 0.0, 1.0], [0.2, 0.2, 0.6]] ];
syn.stats.rmse(expAndPredVals); // 0.6957010852370435
syn.stats.score(expAndPredVals); // 0.6Create a
Codec
by providing the attributes and the data points
You can use a codec to encode and decode a data point.
let setosa = { petal_length: "1.5", petal_width: "0.1", sepal_length: "4.9", sepal_width: "3.1", species: "setosa" }; let versicolor = { petal_length: "3.8", petal_width: "1.1", sepal_length: "5.5", sepal_width: "2.4", species: "versicolor" }; let virginica = { petal_length: "6.0", petal_width: "2.2", sepal_length: "5.0", sepal_width: "1.5", species: "virginica" }; let dataset = [setosa, versicolor, virginica]; let attributes = [ ["petal_length", false], ["petal_width", false], ["sepal_length", false], ["sepal_width", false], ["species", true], ]; let codec = new syn.Codec({attributes: attributes, data: dataset});
let codecJson = codec.json(); // "[{\"Case\" : \"SerializableContinuous\", " + // "\"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]}," + // "{\"Case\" : \"SerializableContinuous\", " + // "\"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]}," + // "{\"Case\" : \"SerializableContinuous\", " + // "\"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]}," + // "{\"Case\" : \"SerializableContinuous\", " + // "\"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]}," + // "{\"Case\" : \"SerializableDiscrete\", " + // "\"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]"Create a
Codec
by providing its json
new syn.Codec({json: codecJson})
let encodedSetosa = codec.encode(setosa); // [ 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0 ]
codec.decode(encodedSetosa); // { // petal_length: "1.5", // petal_width: "0.1", // sepal_length: "4.9", // sepal_width: "3.1", // species: "setosa" // }
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4