A plug-and-play library for neural networks written in Scala 3!
libraryDependencies += "com.github.mrdimosthenis" %% "synapses" % "8.0.0"Create a random neural network by providing its layer sizes
val randNet = Net(List(2, 3, 1))
randNet.json() // res0: String = """[ // [{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]}, // {"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]}, // {"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}], // [{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}] // ]"""Create a neural network by providing its json
val net = Net("""[ [{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]}, {"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]}, {"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}], [{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}] ]""")
net.predict(List(0.2, 0.6)) // res1: List[Double] = List(0.49131100324012494)
net.fit( learningRate = 0.1, inputValues = List(0.2, 0.6), expectedOutput = List(0.9) )
The fit
method returns the neural network with its weights adjusted to a single observation.
In practice, for a neural network to be fully trained, it should be fitted with multiple observations, usually by folding over an iterator.
Iterator( (List(0.2, 0.6), List(0.9)), (List(0.1, 0.8), List(0.2)), (List(0.5, 0.4), List(0.6)) ).foldLeft(net){ case (acc, (xs, ys)) => acc.fit(learningRate = 0.1, xs, ys) }
Every function is efficient because its implementation is based on lazy list and all information is obtained at a single pass.
For a neural network that has huge layers, the performance can be further improved by using the parallel counterparts of predict
and fit
(parPredict
and parFit
).
Net(layerSizes = List(2, 3, 1), seed = 1000)
We can provide a seed
to create a non-random neural network. This way, we can use it for testing.
import scala.util.Random import synapses.lib.Fun def activationF(layerIndex: Int): Fun = layerIndex match case 0 => Fun.sigmoid case 1 => Fun.identity case 2 => Fun.leakyReLU case 3 => Fun.tanh def weightInitF(layerIndex: Int): Double = (layerIndex + 1) * (1.0 - 2.0 * Random().nextDouble()) val customNet = Net(layerSizes = List(4, 6, 8, 5, 3), activationF, weightInitF)
activationF
function accepts the index of a layer and returns an activation function for its neurons.weightInitF
function accepts the index of a layer and returns a weight for the synapses of its neurons.If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.
With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.
Measure the difference between the expected and predicted valuesimport synapses.lib.Stats def expAndPredVals() = Iterator( (List(0.0, 0.0, 1.0), List(0.0, 0.1, 0.9)), (List(0.0, 1.0, 0.0), List(0.8, 0.2, 0.0)), (List(1.0, 0.0, 0.0), List(0.7, 0.1, 0.2)), (List(1.0, 0.0, 0.0), List(0.3, 0.3, 0.4)), (List(0.0, 0.0, 1.0), List(0.2, 0.2, 0.6)) )
Stats.rmse(expAndPredVals()) // res6: Double = 0.6957010852370435
Stats.score(expAndPredVals()) // res7: Double = 0.6
import synapses.lib.Codec
val setosa = Map( "petal_length" -> "1.5", "petal_width" -> "0.1", "sepal_length" -> "4.9", "sepal_width" -> "3.1", "species" -> "setosa" ) val versicolor = Map( "petal_length" -> "3.8", "petal_width" -> "1.1", "sepal_length" -> "5.5", "sepal_width" -> "2.4", "species" -> "versicolor" ) val virginica = Map( "petal_length" -> "6.0", "petal_width" -> "2.2", "sepal_length" -> "5.0", "sepal_width" -> "1.5", "species" -> "virginica" ) def dataset() = Iterator(setosa,versicolor,virginica)
You can use a Codec
to encode and decode a data point.
Codec
by providing the attributes and the data points
val codec = Codec( List(("petal_length", false), ("petal_width", false), ("sepal_length", false), ("sepal_width", false), ("species", true)), dataset() )
val codecJson = codec.json() // codecJson: String = """[ // {"Case" : "SerializableContinuous", // "Fields" : [{"key" : "petal_length","min" : 1.5,"max" : 6.0}]}, // {"Case" : "SerializableContinuous", // "Fields" : [{"key" : "petal_width","min" : 0.1,"max" : 2.2}]}, // {"Case" : "SerializableContinuous", // "Fields" : [{"key" : "sepal_length","min" : 4.9,"max" : 5.5}]}, // {"Case" : "SerializableContinuous", // "Fields" : [{"key" : "sepal_width","min" : 1.5,"max" : 3.1}]}, // {"Case" : "SerializableDiscrete", // "Fields" : [{"key" : "species","values" : ["virginica","versicolor","setosa"]}]} // ]"""Create a codec by providing its json
val encodedSetosa = codec.encode(setosa) // encodedSetosa: List[Double] = List(0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
codec.decode(encodedSetosa) // res9: Map[String, String] = HashMap( // "species" -> "setosa", // "sepal_width" -> "3.1", // "petal_width" -> "0.1", // "petal_length" -> "1.5", // "sepal_length" -> "4.9" // )
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4