A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/mrdimosthenis/scala-synapses below:

mrdimosthenis/scala-synapses: A plug-and play library for neural networks written in Scala 3

A plug-and-play library for neural networks written in Scala 3!

libraryDependencies += "com.github.mrdimosthenis" %% "synapses" % "8.0.0"
Create a random neural network by providing its layer sizes
val randNet = Net(List(2, 3, 1))
Get the json of the random neural network
randNet.json()
// res0: String = """[
//   [{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
//    {"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
//    {"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
//   [{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
// ]"""
Create a neural network by providing its json
val net = Net("""[
  [{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
   {"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
   {"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
  [{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
]""")
net.predict(List(0.2, 0.6))
// res1: List[Double] = List(0.49131100324012494)
net.fit(
    learningRate = 0.1,
    inputValues = List(0.2, 0.6),
    expectedOutput = List(0.9)
)

The fit method returns the neural network with its weights adjusted to a single observation.

Fully train a neural network

In practice, for a neural network to be fully trained, it should be fitted with multiple observations, usually by folding over an iterator.

Iterator(
    (List(0.2, 0.6), List(0.9)),
    (List(0.1, 0.8), List(0.2)),
    (List(0.5, 0.4), List(0.6))
).foldLeft(net){ case (acc, (xs, ys)) =>
    acc.fit(learningRate = 0.1, xs, ys)
}

Every function is efficient because its implementation is based on lazy list and all information is obtained at a single pass.

For a neural network that has huge layers, the performance can be further improved by using the parallel counterparts of predict and fit (parPredict and parFit).

Create a neural network for testing
Net(layerSizes = List(2, 3, 1), seed = 1000)

We can provide a seed to create a non-random neural network. This way, we can use it for testing.

Define the activation functions and the weights
import scala.util.Random
import synapses.lib.Fun

def activationF(layerIndex: Int): Fun =
    layerIndex match
      case 0 => Fun.sigmoid
      case 1 => Fun.identity
      case 2 => Fun.leakyReLU
      case 3 => Fun.tanh

def weightInitF(layerIndex: Int): Double =
    (layerIndex + 1) * (1.0 - 2.0 * Random().nextDouble())

val customNet = Net(layerSizes = List(4, 6, 8, 5, 3), activationF, weightInitF)

If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.

With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

Measure the difference between the expected and predicted values
import synapses.lib.Stats
def expAndPredVals() =
    Iterator(
      (List(0.0, 0.0, 1.0), List(0.0, 0.1, 0.9)),
      (List(0.0, 1.0, 0.0), List(0.8, 0.2, 0.0)),
      (List(1.0, 0.0, 0.0), List(0.7, 0.1, 0.2)),
      (List(1.0, 0.0, 0.0), List(0.3, 0.3, 0.4)),
      (List(0.0, 0.0, 1.0), List(0.2, 0.2, 0.6))
    )
Stats.rmse(expAndPredVals())
// res6: Double = 0.6957010852370435
Stats.score(expAndPredVals())
// res7: Double = 0.6
import synapses.lib.Codec
val setosa = Map(
  "petal_length" -> "1.5",
  "petal_width" -> "0.1",
  "sepal_length" -> "4.9",
  "sepal_width" -> "3.1",
  "species" -> "setosa"
)

val versicolor = Map(
  "petal_length" -> "3.8",
  "petal_width" -> "1.1",
  "sepal_length" -> "5.5",
  "sepal_width" -> "2.4",
  "species" -> "versicolor"
)

val virginica = Map(
  "petal_length" -> "6.0",
  "petal_width" -> "2.2",
  "sepal_length" -> "5.0",
  "sepal_width" -> "1.5",
  "species" -> "virginica"
)

def dataset() = Iterator(setosa,versicolor,virginica)

You can use a Codec to encode and decode a data point.

Create a Codec by providing the attributes and the data points
val codec = Codec(
    List(("petal_length", false),
         ("petal_width", false),
         ("sepal_length", false),
         ("sepal_width", false),
         ("species", true)),
    dataset()
)
Get the json of the codec
val codecJson = codec.json()
// codecJson: String = """[
//   {"Case" : "SerializableContinuous",
//    "Fields" : [{"key" : "petal_length","min" : 1.5,"max" : 6.0}]},
//   {"Case" : "SerializableContinuous",
//    "Fields" : [{"key" : "petal_width","min" : 0.1,"max" : 2.2}]},
//   {"Case" : "SerializableContinuous",
//    "Fields" : [{"key" : "sepal_length","min" : 4.9,"max" : 5.5}]},
//   {"Case" : "SerializableContinuous",
//    "Fields" : [{"key" : "sepal_width","min" : 1.5,"max" : 3.1}]},
//   {"Case" : "SerializableDiscrete",
//    "Fields" : [{"key" : "species","values" : ["virginica","versicolor","setosa"]}]}
// ]"""
Create a codec by providing its json
val encodedSetosa = codec.encode(setosa)
// encodedSetosa: List[Double] = List(0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
codec.decode(encodedSetosa)
// res9: Map[String, String] = HashMap(
//   "species" -> "setosa",
//   "sepal_width" -> "3.1",
//   "petal_width" -> "0.1",
//   "petal_length" -> "1.5",
//   "sepal_length" -> "4.9"
// )

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4