A neural networks library for Clojure!
[org.clojars.mrdimosthenis/clj-synapses "1.0.3"]
(require '[clj-synapses.net :as net])Create a random neural network by providing its layer sizes
(def rand-network (net/->net [2 3 1]))
(net/->json rand-network) ;;=> "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}, ;; {\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}, ;; {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}], ;; [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"Create a neural network by providing its json
(def network (net/json-> "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]}, {\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]}, {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}], [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"))
(net/predict network [0.2 0.6]) ;;=> [0.49131100324012494]
(net/fit network 0.1 [0.2 0.6] [0.9])
The fit
function returns a new neural network with the weights adjusted to a single observation.
In practice, for a neural network to be fully trained, it should be fitted with multiple observations, usually by reducing over a collection.
(reduce (fn [acc [xs ys]] (net/fit acc 0.1 xs ys)) network [[[0.2 0.6] [0.9]] [[0.1 0.8] [0.2]] [[0.5 0.4] [0.6]]])
Every function is efficient because its implementation is based on lazy list and all information is obtained at a single pass.
For a neural network that has huge layers, the performance can be further improved by using the parallel counterparts of net/predict
and net/fit
(net/par-predict
and net/par-fit
).
We can provide a seed
to create a non-random neural network. This way, we can use it for testing.
(require '[clj-synapses.fun :as fun]) (defn activation-f [layer-index] (condp = layer-index 0 fun/sigmoid 1 fun/identity 2 fun/leaky-re-lu 3 fun/tanh)) (defn weight-init-f [layer-index] (* (inc layer-index) (- 1 (* 2.0 (rand))))) (def custom-network (net/->net [4 6 8 5 3] activation-f weight-init-f))
activation-f
function accepts the index of a layer and returns an activation function for its neurons.weight-initf
function accepts the index of a layer and returns a weight for the synapses of its neurons.If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.
(net/->svg custom-network)
With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.
Measure the difference between the expected and predicted values(require '[clj-synapses.stats :as stats]) (def exp-and-pred-vals [[[0.0 0.0 1.0] [0.0 0.1 0.9]] [[0.0 1.0 0.0] [0.8 0.2 0.0]] [[1.0 0.0 0.0] [0.7 0.1 0.2]] [[1.0 0.0 0.0] [0.3 0.3 0.4]] [[0.0 0.0 1.0] [0.2 0.2 0.6]]])
(stats/rmse exp-and-pred-vals) ;;=> 0.6957010852370435
(stats/score exp-and-pred-vals) ;;=> 0.6
(require '[clj-synapses.codec :as codec])
(def setosa {"petal_length" "1.5" "petal_width" "0.1" "sepal_length" "4.9" "sepal_width" "3.1" "species" "setosa"}) (def versicolor {"petal_length" "3.8" "petal_width" "1.1" "sepal_length" "5.5" "sepal_width" "2.4" "species" "versicolor"}) (def virginica {"petal_length" "6.0" "petal_width" "2.2" "sepal_length" "5.0" "sepal_width" "1.5" "species" "virginica"}) (def dataset [setosa versicolor virginica])
You can use a codec
to encode and decode a data point.
codec
by providing the attributes and the data points
(def preprocessor (codec/->codec [["petal_length" false] ["petal_width" false] ["sepal_length" false] ["sepal_width" false] ["species" true]] dataset)) )
(codec/->json preprocessor) ;;=> "[{\"Case\" : \"SerializableContinuous\", ;; \"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]}, ;; {\"Case\" : \"SerializableContinuous\", ;; \"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]}, ;; {\"Case\" : \"SerializableContinuous\", ;; \"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]}, ;; {\"Case\" : \"SerializableContinuous\", ;; \"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]}, ;; {\"Case\" : \"SerializableDiscrete\", ;; \"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]"Create a codec by providing its json
(codec/json-> "[{\"Case\" : \"SerializableContinuous\", \"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]}, {\"Case\" : \"SerializableContinuous\", \"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]}, {\"Case\" : \"SerializableContinuous\", \"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]}, {\"Case\" : \"SerializableContinuous\", \"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]}, {\"Case\" : \"SerializableDiscrete\", \"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]")
(def encoded-setosa (codec/encode preprocessor setosa)) ;; [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0]
(codec/decode preprocessor encoded-setosa) ;;=> {"species" "setosa" ;; "sepal_width" "3.1" ;; "petal_width" "0.1", ;; "petal_length" "1.5" ;; "sepal_length" "4.9"}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4