A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/mrdimosthenis/clj-synapses below:

mrdimosthenis/clj-synapses: A neural networks library for Clojure

A neural networks library for Clojure!

[org.clojars.mrdimosthenis/clj-synapses "1.0.3"]
(require '[clj-synapses.net :as net])
Create a random neural network by providing its layer sizes
(def rand-network
  (net/->net
    [2 3 1]))
Get the json of the random neural network
(net/->json
  rand-network)
;;=> "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]},
;;      {\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]},
;;      {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}],
;;     [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"
Create a neural network by providing its json
(def network
  (net/json->
    "[[{\"activationF\" : \"sigmoid\", \"weights\" : [-0.5,0.1,0.8]},
       {\"activationF\" : \"sigmoid\", \"weights\" : [0.7,0.6,-0.1]},
       {\"activationF\" : \"sigmoid\", \"weights\" : [-0.8,-0.1,-0.7]}],
      [{\"activationF\" : \"sigmoid\", \"weights\" : [0.5,-0.3,-0.4,-0.5]}]]"))
(net/predict
  network
  [0.2 0.6])
;;=> [0.49131100324012494]
(net/fit
  network
  0.1
  [0.2 0.6]
  [0.9])

The fit function returns a new neural network with the weights adjusted to a single observation.

Fully train a neural network

In practice, for a neural network to be fully trained, it should be fitted with multiple observations, usually by reducing over a collection.

(reduce
  (fn [acc [xs ys]]
    (net/fit acc 0.1 xs ys))
  network
  [[[0.2 0.6] [0.9]]
   [[0.1 0.8] [0.2]]
   [[0.5 0.4] [0.6]]])

Every function is efficient because its implementation is based on lazy list and all information is obtained at a single pass.

For a neural network that has huge layers, the performance can be further improved by using the parallel counterparts of net/predict and net/fit (net/par-predict and net/par-fit).

Create a neural network for testing

We can provide a seed to create a non-random neural network. This way, we can use it for testing.

Define the activation functions and the weights
(require '[clj-synapses.fun :as fun])

(defn activation-f
  [layer-index]
  (condp = layer-index
    0 fun/sigmoid
    1 fun/identity
    2 fun/leaky-re-lu
    3 fun/tanh))

(defn weight-init-f
  [layer-index]
  (* (inc layer-index)
     (- 1 (* 2.0 (rand)))))

(def custom-network
  (net/->net
    [4 6 8 5 3]
    activation-f
    weight-init-f))

If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.

(net/->svg
  custom-network)

With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.

Measure the difference between the expected and predicted values
(require '[clj-synapses.stats :as stats])

(def exp-and-pred-vals
  [[[0.0 0.0 1.0] [0.0 0.1 0.9]]
   [[0.0 1.0 0.0] [0.8 0.2 0.0]]
   [[1.0 0.0 0.0] [0.7 0.1 0.2]]
   [[1.0 0.0 0.0] [0.3 0.3 0.4]]
   [[0.0 0.0 1.0] [0.2 0.2 0.6]]])
(stats/rmse
  exp-and-pred-vals)
;;=> 0.6957010852370435
(stats/score
  exp-and-pred-vals)
;;=> 0.6
(require '[clj-synapses.codec :as codec])
(def setosa
  {"petal_length" "1.5"
   "petal_width"  "0.1"
   "sepal_length" "4.9"
   "sepal_width"  "3.1"
   "species"      "setosa"})

(def versicolor
  {"petal_length" "3.8"
   "petal_width"  "1.1"
   "sepal_length" "5.5"
   "sepal_width"  "2.4"
   "species"      "versicolor"})

(def virginica
  {"petal_length" "6.0"
   "petal_width"  "2.2"
   "sepal_length" "5.0"
   "sepal_width"  "1.5"
   "species"      "virginica"})

(def dataset
  [setosa
   versicolor
   virginica])

You can use a codec to encode and decode a data point.

Create a codec by providing the attributes and the data points
(def preprocessor
  (codec/->codec
    [["petal_length" false]
     ["petal_width" false]
     ["sepal_length" false]
     ["sepal_width" false]
     ["species" true]]
    dataset))
)
Get the json of the codec
(codec/->json
  preprocessor)
;;=> "[{\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]},
;;     {\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]},
;;     {\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]},
;;     {\"Case\" : \"SerializableContinuous\",
;;      \"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]},
;;     {\"Case\" : \"SerializableDiscrete\",
;;      \"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]"
Create a codec by providing its json
(codec/json->
  "[{\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"petal_length\",\"min\" : 1.5,\"max\" : 6.0}]},
    {\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"petal_width\",\"min\" : 0.1,\"max\" : 2.2}]},
    {\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"sepal_length\",\"min\" : 4.9,\"max\" : 5.5}]},
    {\"Case\" : \"SerializableContinuous\",
     \"Fields\" : [{\"key\" : \"sepal_width\",\"min\" : 1.5,\"max\" : 3.1}]},
    {\"Case\" : \"SerializableDiscrete\",
     \"Fields\" : [{\"key\" : \"species\",\"values\" : [\"virginica\",\"versicolor\",\"setosa\"]}]}]")
(def encoded-setosa
  (codec/encode
    preprocessor
    setosa))
;; [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0]
(codec/decode
  preprocessor
  encoded-setosa)
;;=> {"species"      "setosa"
;;    "sepal_width"  "3.1"
;;    "petal_width"  "0.1",
;;    "petal_length" "1.5"
;;    "sepal_length" "4.9"}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4