The goal of rptR
is to provide point estimates, confidence intervals and significance tests for the repeatability (intra-class correlation coefficient) of measurements based on generalised linear mixed models (GLMMs). The function ?summary.rpt
produces summaries in a detailed format, whereby ?plot.rpt
plots the distributions of bootstrap or permutation test estimates.
When using rptR
, please cite our paper:
Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution, 8(11), 1639-1644.
You can install the stable version of rptR
from CRAN with:
Or the development version from GitHub with:
# install.packages("remotes") remotes::install_github("mastoffel/rptR", build_vignettes = TRUE, dependencies = TRUE) # manual browseVignettes("rptR")
If you find a bug, please report a minimal reproducible example in the issues.
Repeatability of beetle body length (BodyL
) for both Container
and Population
while adjusting for Treatment
and Sex
:
library(rptR) data(BeetlesBody) rpts <- rpt(BodyL ~ Treatment + Sex + (1 | Container) + (1 | Population), grname = c("Container", "Population"), data = BeetlesBody, datatype = "Gaussian", nboot = 100, npermut = 100)
summary(rpts) #> #> Repeatability estimation using the lmm method #> #> Call = rpt(formula = BodyL ~ Treatment + Sex + (1 | Container) + (1 | Population), grname = c("Container", "Population"), data = BeetlesBody, datatype = "Gaussian", nboot = 100, npermut = 100) #> #> Data: 960 observations #> ---------------------------------------- #> #> Container (120 groups) #> #> Repeatability estimation overview: #> R SE 2.5% 97.5% P_permut LRT_P #> 0.0834 0.0247 0.0449 0.135 0.01 0 #> #> Bootstrapping and Permutation test: #> N Mean Median 2.5% 97.5% #> boot 100 0.08428 0.077960 0.0449 0.1352 #> permut 100 0.00428 0.000315 0.0000 0.0232 #> #> Likelihood ratio test: #> logLik full model = -1528.553 #> logLik red. model = -1555.264 #> D = 53.4, df = 1, P = 1.34e-13 #> #> ---------------------------------------- #> #> #> Population (12 groups) #> #> Repeatability estimation overview: #> R SE 2.5% 97.5% P_permut LRT_P #> 0.491 0.107 0.233 0.644 0.02 0 #> #> Bootstrapping and Permutation test: #> N Mean Median 2.5% 97.5% #> boot 100 0.477 0.491 0.233 0.644 #> permut 100 0.454 0.453 0.422 0.483 #> #> Likelihood ratio test: #> logLik full model = -1528.553 #> logLik red. model = -1595.399 #> D = 134, df = 1, P = 3.19e-31 #> #> ----------------------------------------
rptR
estimates uncertainties around repeatability estimates with parametric bootstrapping. The distribution of bootstrap estimates can easily be plotted.
plot(rpts, grname="Container", type="boot", cex.main=0.8, col = "#ECEFF4") plot(rpts, grname="Population", type="boot", cex.main=0.8, col = "#ECEFF4")
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4