A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/ludvigolsen/rearrr below:

LudvigOlsen/rearrr: Rearrrange data by a set of methods

Rearrrange Data
Authors: Ludvig R. Olsen ( r-pkgs@ludvigolsen.dk )
License: MIT
Started: April 2020

R package for rearranging data by a set of methods.

We distinguish between rearrangers and mutators, where the first reorders the data points and the second changes the values of the data points.

When performing an operation relative to a point in an n-dimensional vector space, we refer to the point as the origin. If we, for instance, wish to rotate our data points around the point at x = 3 and y = 7, those are the coordinates of our origin.

CRAN (when available):

install.packages("rearrr")

Development version:

install.packages("devtools")

devtools::install_github("LudvigOlsen/rearrr")

Function Description center_max() Center the highest value with values decreasing around it. center_min() Center the lowest value with values increasing around it. position_max() Position the highest value with values decreasing around it. position_min() Position the lowest value with values increasing around it. pair_extremes() Arrange as lowest, highest, 2nd lowest, 2nd highest, etc. triplet_extremes() Arrange as lowest, most middle, highest, 2nd lowest, 2nd most middle, 2nd highest, etc. closest_to() Order values by shortest distance to an origin. furthest_from() Order values by longest distance to an origin. rev_windows() Reverse order window-wise. roll_elements() Rolls/shifts positions of elements. shuffle_hierarchy() Shuffle multi-column hierarchy of groups. Function Description Dimensions rotate_2d(), rotate_3d() Rotate values around an origin in 2 or 3 dimensions. 2 or 3 swirl_2d(), swirl_3d() Swirl values around an origin in 2 or 3 dimensions. 2 or 3 shear_2d(), shear_3d() Shear values around an origin in 2 or 3 dimensions. 2 or 3 expand_distances() Expand distances to an origin. n expand_distances_each() Expand distances to an origin separately for each dimension. n cluster_groups() Move data points into clusters around group centroids. n dim_values() Dim values of a dimension by the distance to an n-dimensional origin. n (alters 1) flip_values() Flip the values around an origin. n roll_values() Shifts values and wraps to a range. n wrap_to_range() Wraps values to a range. n transfer_centroids() Transfer centroids from one data.frame to another. n apply_transformation_matrix() Apply transformation matrix to data.frame columns. n Function Description circularize() Create x-coordinates for y-coordinates so they form a circle. hexagonalize() Create x-coordinates for y-coordinates so they form a hexagon. square() Create x-coordinates for y-coordinates so they form a square. triangularize() Create x-coordinates for y-coordinates so they form a triangle. Class Description Pipeline Chain multiple transformations. GeneratedPipeline Chain multiple transformations and generate argument values per group. FixedGroupsPipeline Chain multiple transformations with different argument values per group. Function Description generate_clusters() Generate n-dimensional clusters.

Additionally, some functions have *_vec() versions, that take and return a vector.

Note: The available utility functions (like scalers, converters and measuring functions) are listed at the bottom of the readme.

Let’s see some examples. We start by attaching the necessary packages:

library(rearrr)
library(dplyr)

xpectr::set_test_seed(1)

While we can use the functions with data.frames, we showcase many of them with a vector for simplicity. At times, we use the *_vec() version of a function in order to get the output as a vector instead of a data.frame.

The functions work with grouped data.frames and in magrittr pipelines (%>%).

Rearrangers change the order of the data points.

center_max(data = 1:10)
#>  [1]  1  3  5  7  9 10  8  6  4  2
center_min(data = 1:10)
#>  [1] 10  8  6  4  2  1  3  5  7  9

position_max(data = 1:10, position = 3)
#>  [1]  6  8 10  9  7  5  4  3  2  1
position_min(data = 1:10, position = 3)
#>  [1]  5  3  1  2  4  6  7  8  9 10

pair_extremes(data = 1:10)
#> # A tibble: 10 × 2
#>    Value .pair
#>    <int> <fct>
#>  1     1 1    
#>  2    10 1    
#>  3     2 2    
#>  4     9 2    
#>  5     3 3    
#>  6     8 3    
#>  7     4 4    
#>  8     7 4    
#>  9     5 5    
#> 10     6 5

Closest to / furthest from

We use the _vec() versions to get the reordered vectors. For data.frames, use closest_to()/furthest_from() instead.

The origin can be passed as either a specific coordinate (here, a value in data) or a function.

closest_to_vec(data = 1:10, origin_fn = create_origin_fn(median))
#>  [1]  5  6  4  7  3  8  2  9  1 10
furthest_from_vec(data = 1:10, origin = 5)
#>  [1] 10  1  9  2  8  3  7  4  6  5

We use the _vec() version to get the reordered vector. For data.frames, use rev_windows() instead.

rev_windows_vec(data = 1:10, window_size = 3)
#>  [1]  3  2  1  6  5  4  9  8  7 10

When having a data.frame with multiple grouping columns, we can shuffle them one column (hierarchical level) at a time:

# Shuffle a given data frame 'df'
shuffle_hierarchy(df, group_cols = c("a", "b", "c"))

The columns are shuffled one at a time, as so:

Mutators change the values of the data points.

2-dimensional rotation:

# Set seed for reproducibility
xpectr::set_test_seed(1)

# Draw random numbers 
random_sample <- round(runif(10), digits = 4)
random_sample
#>  [1] 0.2655 0.3721 0.5729 0.9082 0.2017 0.8984 0.9447 0.6608 0.6291 0.0618

rotate_2d(
  data = random_sample,
  degrees = 60,
  origin_fn = centroid
)
#> # A tibble: 10 × 6
#>    Index  Value Index_rotated Value_rotated .origin   .degrees
#>    <int>  <dbl>         <dbl>         <dbl> <list>       <dbl>
#>  1     1 0.266           3.50       -3.49   <dbl [2]>       60
#>  2     2 0.372           3.91       -2.57   <dbl [2]>       60
#>  3     3 0.573           4.23       -1.60   <dbl [2]>       60
#>  4     4 0.908           4.44       -0.569  <dbl [2]>       60
#>  5     5 0.202           5.55       -0.0564 <dbl [2]>       60
#>  6     6 0.898           5.45        1.16   <dbl [2]>       60
#>  7     7 0.945           5.91        2.05   <dbl [2]>       60
#>  8     8 0.661           6.66        2.77   <dbl [2]>       60
#>  9     9 0.629           7.18        3.62   <dbl [2]>       60
#> 10    10 0.0618          8.17        4.20   <dbl [2]>       60
#> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
#> ℹ Please use `linewidth` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

3-dimensional rotation:

# Set seed
set.seed(3)

# Create a data frame
df <- data.frame(
  "x" = 1:12,
  "y" = c(1, 2, 3, 4, 9, 10, 11,
          12, 15, 16, 17, 18),
  "z" = runif(12)
)

# Perform rotation
rotate_3d(
  data = df,
  x_col = "x",
  y_col = "y",
  z_col = "z",
  x_deg = 45,
  y_deg = 90,
  z_deg = 135,
  origin_fn = centroid
)
#> # A tibble: 12 × 9
#>        x     y     z x_rotated y_rotated z_rotated .origin .degrees .degrees_str
#>    <int> <dbl> <dbl>     <dbl>     <dbl>     <dbl> <list>  <list>   <chr>       
#>  1     1     1 0.168    15.3        9.54    5.96   <dbl>   <dbl>    x=45,y=90,z…
#>  2     2     2 0.808    14.3       10.2     4.96   <dbl>   <dbl>    x=45,y=90,z…
#>  3     3     3 0.385    13.3        9.76    3.96   <dbl>   <dbl>    x=45,y=90,z…
#>  4     4     4 0.328    12.3        9.70    2.96   <dbl>   <dbl>    x=45,y=90,z…
#>  5     5     9 0.602     7.33       9.97    1.96   <dbl>   <dbl>    x=45,y=90,z…
#>  6     6    10 0.604     6.33       9.98    0.962  <dbl>   <dbl>    x=45,y=90,z…
#>  7     7    11 0.125     5.33       9.50   -0.0384 <dbl>   <dbl>    x=45,y=90,z…
#>  8     8    12 0.295     4.33       9.67   -1.04   <dbl>   <dbl>    x=45,y=90,z…
#>  9     9    15 0.578     1.33       9.95   -2.04   <dbl>   <dbl>    x=45,y=90,z…
#> 10    10    16 0.631     0.333     10.0    -3.04   <dbl>   <dbl>    x=45,y=90,z…
#> 11    11    17 0.512    -0.667      9.88   -4.04   <dbl>   <dbl>    x=45,y=90,z…
#> 12    12    18 0.505    -1.67       9.88   -5.04   <dbl>   <dbl>    x=45,y=90,z…

2-dimensional swirling:

# Rotate values
swirl_2d(data = rep(1, 50), radius = 95, origin = c(0, 0))
#> # A tibble: 50 × 7
#>    Index Value Index_swirled Value_swirled .origin   .degrees .radius
#>    <int> <dbl>         <dbl>         <dbl> <list>       <dbl>   <dbl>
#>  1     1     1         0.952          1.05 <dbl [2]>     2.68      95
#>  2     2     1         1.92           1.15 <dbl [2]>     4.24      95
#>  3     3     1         2.88           1.31 <dbl [2]>     5.99      95
#>  4     4     1         3.83           1.53 <dbl [2]>     7.81      95
#>  5     5     1         4.76           1.82 <dbl [2]>     9.66      95
#>  6     6     1         5.68           2.18 <dbl [2]>    11.5       95
#>  7     7     1         6.58           2.59 <dbl [2]>    13.4       95
#>  8     8     1         7.45           3.07 <dbl [2]>    15.3       95
#>  9     9     1         8.30           3.61 <dbl [2]>    17.2       95
#> 10    10     1         9.13           4.21 <dbl [2]>    19.0       95
#> # ℹ 40 more rows

3-dimensional swirling:

# Set seed
set.seed(4)

# Create a data frame
df <- data.frame(
  "x" = 1:50,
  "y" = 1:50,
  "z" = 1:50,
  "r1" = runif(50),
  "r2" = runif(50) * 35,
  "o" = 1,
  "g" = rep(1:5, each = 10)
)

# They see me swiiirling
swirl_3d(
  data = df,
  x_radius = 45,
  x_col = "x",
  y_col = "y",
  z_col = "z",
  origin = c(0, 0, 0),
  keep_original = FALSE
)
#> # A tibble: 50 × 7
#>    x_swirled y_swirled z_swirled .origin   .degrees  .radius   .radius_str 
#>        <dbl>     <dbl>     <dbl> <list>    <list>    <list>    <chr>       
#>  1         1     0.872      1.11 <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  2         2     1.46       2.42 <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  3         3     1.74       3.87 <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  4         4     1.68       5.40 <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  5         5     1.27       6.96 <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  6         6     0.508      8.47 <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  7         7    -0.604      9.88 <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  8         8    -2.05      11.1  <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#>  9         9    -3.80      12.1  <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#> 10        10    -5.82      12.9  <dbl [3]> <dbl [3]> <dbl [3]> x=45,y=0,z=0
#> # ℹ 40 more rows
# 1d expansion
expand_distances(
  data = random_sample,
  multiplier = 3,
  origin_fn = centroid,
  exponentiate = TRUE
)
#> # A tibble: 10 × 4
#>     Value Value_expanded .exponent .origin  
#>     <dbl>          <dbl>     <dbl> <list>   
#>  1 0.266         -0.575          3 <dbl [1]>
#>  2 0.372         -0.0891         3 <dbl [1]>
#>  3 0.573          0.617          3 <dbl [1]>
#>  4 0.908          2.05           3 <dbl [1]>
#>  5 0.202         -0.908          3 <dbl [1]>
#>  6 0.898          1.99           3 <dbl [1]>
#>  7 0.945          2.26           3 <dbl [1]>
#>  8 0.661          0.916          3 <dbl [1]>
#>  9 0.629          0.803          3 <dbl [1]>
#> 10 0.0618        -1.75           3 <dbl [1]>

2d expansion:

Expand differently in each axis:

# Expand x-axis and contract y-axis
expand_distances_each(
  data.frame("x" = runif(10),
             "y" = runif(10)),
  cols = c("x", "y"),
  multipliers = c(7, 0.5),
  origin_fn = centroid
)
#> # A tibble: 10 × 7
#>         x      y x_expanded y_expanded .multipliers .multipliers_str .origin  
#>     <dbl>  <dbl>      <dbl>      <dbl> <list>       <chr>            <list>   
#>  1 0.622  0.284      1.37        0.309 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  2 0.675  0.610      1.74        0.472 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  3 0.802  0.524      2.63        0.428 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  4 0.260  0.0517    -1.17        0.192 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  5 0.760  0.0757     2.33        0.204 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  6 0.0199 0.414     -2.85        0.373 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  7 0.955  0.578      3.70        0.455 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  8 0.437  0.110      0.0675      0.222 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#>  9 0.0892 0.511     -2.36        0.422 <dbl [2]>    x=7,y=0.5        <dbl [2]>
#> 10 0.361  0.169     -0.466       0.251 <dbl [2]>    x=7,y=0.5        <dbl [2]>

# Set seed for reproducibility
xpectr::set_test_seed(3)

# Create data frame with random data and a grouping variable
df <- data.frame(
  "x" = runif(50),
  "y" = runif(50),
  "g" = rep(c(1, 2, 3, 4, 5), each = 10)
) 

cluster_groups(
  data = df, 
  cols = c("x", "y"), 
  group_col = "g"
)
#> # A tibble: 50 × 5
#>        x     y x_clustered y_clustered     g
#>    <dbl> <dbl>       <dbl>       <dbl> <dbl>
#>  1 0.168 0.229       0.335       0.420     1
#>  2 0.808 0.213       0.449       0.417     1
#>  3 0.385 0.877       0.374       0.540     1
#>  4 0.328 0.993       0.364       0.562     1
#>  5 0.602 0.844       0.413       0.534     1
#>  6 0.604 0.910       0.413       0.547     1
#>  7 0.125 0.471       0.328       0.465     1
#>  8 0.295 0.224       0.358       0.419     1
#>  9 0.578 0.128       0.408       0.401     1
#> 10 0.631 0.280       0.418       0.429     1
#> # ℹ 40 more rows

# Add a column with 1s
df_clustered$o <- 1

# Dim the "o" column based on the data point's distance 
# to the most central point in the cluster
df_clustered %>% 
  dplyr::group_by(g) %>% 
  dim_values(
    cols = c("x_clustered", "y_clustered"), 
    dim_col = "o",
    origin_fn = most_centered
  )
#> # A tibble: 50 × 6
#>    x_clustered y_clustered     g     o o_dimmed .origin  
#>          <dbl>       <dbl> <dbl> <dbl>    <dbl> <list>   
#>  1       0.335       0.420     1     1    0.853 <dbl [2]>
#>  2       0.449       0.417     1     1    0.936 <dbl [2]>
#>  3       0.374       0.540     1     1    0.798 <dbl [2]>
#>  4       0.364       0.562     1     1    0.765 <dbl [2]>
#>  5       0.413       0.534     1     1    0.819 <dbl [2]>
#>  6       0.413       0.547     1     1    0.801 <dbl [2]>
#>  7       0.328       0.465     1     1    0.831 <dbl [2]>
#>  8       0.358       0.419     1     1    0.889 <dbl [2]>
#>  9       0.408       0.401     1     1    0.943 <dbl [2]>
#> 10       0.418       0.429     1     1    1     <dbl [2]>
#> # ℹ 40 more rows

# The median value to flip around
median(random_sample)
#> [1] 0.601

# Flip the random numbers around the median
flip_values(
  data = random_sample, 
  origin_fn = create_origin_fn(median)
)
#> # A tibble: 10 × 3
#>     Value Value_flipped .origin  
#>     <dbl>         <dbl> <list>   
#>  1 0.266          0.936 <dbl [1]>
#>  2 0.372          0.830 <dbl [1]>
#>  3 0.573          0.629 <dbl [1]>
#>  4 0.908          0.294 <dbl [1]>
#>  5 0.202          1.00  <dbl [1]>
#>  6 0.898          0.304 <dbl [1]>
#>  7 0.945          0.257 <dbl [1]>
#>  8 0.661          0.541 <dbl [1]>
#>  9 0.629          0.573 <dbl [1]>
#> 10 0.0618         1.14  <dbl [1]>

circularize(runif(200))
#> # A tibble: 200 × 4
#>     Value .circle_x .degrees .origin  
#>     <dbl>     <dbl>    <dbl> <list>   
#>  1 0.766     -0.418    148.  <dbl [2]>
#>  2 0.682      0.461     21.3 <dbl [2]>
#>  3 0.209     -0.398    216.  <dbl [2]>
#>  4 0.712      0.448     25.1 <dbl [2]>
#>  5 0.605      0.484     12.0 <dbl [2]>
#>  6 0.341      0.467    341.  <dbl [2]>
#>  7 0.0412    -0.178    249.  <dbl [2]>
#>  8 0.402     -0.484    192.  <dbl [2]>
#>  9 0.0791     0.256    301.  <dbl [2]>
#> 10 0.313     -0.457    203.  <dbl [2]>
#> # ℹ 190 more rows
hexagonalize(runif(200))
#> # A tibble: 200 × 3
#>     Value .hexagon_x .edge
#>     <dbl>      <dbl> <fct>
#>  1 0.0983   -0.0945  4    
#>  2 0.319    -0.413   5    
#>  3 0.996     0.00215 1    
#>  4 0.726    -0.413   5    
#>  5 0.687    -0.413   5    
#>  6 0.629    -0.413   5    
#>  7 0.803     0.335   1    
#>  8 0.543     0.413   2    
#>  9 0.862     0.234   1    
#> 10 0.984    -0.0222  6    
#> # ℹ 190 more rows
square(runif(200))
#> # A tibble: 200 × 3
#>    Value .square_x .edge
#>    <dbl>     <dbl> <fct>
#>  1 0.296    0.291  2    
#>  2 0.231    0.225  2    
#>  3 0.914    0.0854 1    
#>  4 0.332    0.327  2    
#>  5 0.556   -0.443  4    
#>  6 0.582   -0.418  4    
#>  7 0.217    0.212  2    
#>  8 0.205    0.200  2    
#>  9 0.970    0.0297 1    
#> 10 0.801   -0.199  4    
#> # ℹ 190 more rows
triangularize(runif(200))
#> # A tibble: 200 × 3
#>      Value .triangle_x .edge
#>      <dbl>       <dbl> <fct>
#>  1 0.00823       0     3    
#>  2 0.986         0     3    
#>  3 0.519         0.473 1    
#>  4 0.662         0     3    
#>  5 0.632         0.360 1    
#>  6 0.734         0.258 1    
#>  7 0.668         0     3    
#>  8 0.642         0.350 1    
#>  9 0.584         0.409 1    
#> 10 0.741         0     3    
#> # ℹ 190 more rows
generate_clusters(
  num_rows = 50,
  num_cols = 5,
  num_clusters = 5,
  compactness = 1.6
)
#> # A tibble: 50 × 6
#>       D1    D2    D3     D4    D5 .cluster
#>    <dbl> <dbl> <dbl>  <dbl> <dbl> <fct>   
#>  1 0.316 0.553 0.523 0.202  0.653 1       
#>  2 0.279 0.753 0.447 0.0774 0.788 1       
#>  3 0.301 0.516 0.530 0.0541 0.842 1       
#>  4 0.350 0.594 0.540 0.0701 0.922 1       
#>  5 0.239 0.497 0.677 0.102  0.621 1       
#>  6 0.264 0.632 0.670 0.0742 0.845 1       
#>  7 0.273 0.589 0.696 0.0681 0.885 1       
#>  8 0.273 0.592 0.559 0.0944 0.987 1       
#>  9 0.336 0.569 0.618 0.212  0.670 1       
#> 10 0.302 0.605 0.545 0.0601 0.938 1       
#> # ℹ 40 more rows

Function Description radians_to_degrees() Converts radians to degrees. degrees_to_radians() Converts degrees to radians. Function Description min_max_scale() Scale values to a range. to_unit_length() Scale vectors to unit length row-wise or column-wise. Function Description distance() Calculates distance to an origin. angle() Calculates angle between points and an origin. vector_length() Calculates vector length/magnitude row-wise or column-wise. Function Description create_origin_fn() Creates function for finding origin coordinates (like centroid()). centroid() Calculates the mean of each supplied vector/column. most_centered() Finds coordinates of data point closest to the centroid. is_most_centered() Indicates whether a data point is the most centered. midrange() Calculates the midrange of each supplied vector/column. create_n_fn() Creates function for finding the number of positions to move. median_index() Calculates median index of each supplied vector. quantile_index() Calculates quantile of indices for each supplied vector.

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4