The aim of rio is to make data file I/O in R as easy as possible by implementing two main functions in Swiss-army knife style:
import()
provides a painless data import experience by automatically choosing the appropriate import/read function based on file extension (or a specified format
argument)export()
provides the same painless file recognition for data export/write functionalityThe package is available on CRAN and can be installed directly in R using install.packages()
.
The latest development version on GitHub can be installed using:
if (!require("remotes")){ install.packages("remotes") } remotes::install_github("gesistsa/rio")
Optional: Installation of additional formats (see below: Supported file formats)
library(rio) install_formats()
Because rio is meant to streamline data I/O, the package is extremely easy to use. Here are some examples of reading, writing, and converting data files.
Importing data is handled with one function, import()
:
library("rio") import("starwars.xlsx")
## Name homeworld species
## 1 Luke Skywalker Tatooine Human
## 2 C-3PO Tatooine Human
## 3 R2-D2 Alderaan Human
## 4 Darth Vader Tatooine Human
## 5 Leia Organa Tatooine Human
## 6 Owen Lars Tatooine Human
## 7 Beru Whitesun lars Stewjon Human
## 8 R5-D4 Tatooine Human
## 9 Biggs Darklighter Kashyyyk Wookiee
## 10 Obi-Wan Kenobi Corellia Human
## Name homeworld species
## 1 Luke Skywalker Tatooine Human
## 2 C-3PO Tatooine Human
## 3 R2-D2 Alderaan Human
## 4 Darth Vader Tatooine Human
## 5 Leia Organa Tatooine Human
## 6 Owen Lars Tatooine Human
## 7 Beru Whitesun lars Stewjon Human
## 8 R5-D4 Tatooine Human
## 9 Biggs Darklighter Kashyyyk Wookiee
## 10 Obi-Wan Kenobi Corellia Human
Exporting data is handled with one function, export()
:
export(mtcars, "mtcars.csv") # comma-separated values export(mtcars, "mtcars.rds") # R serialized export(mtcars, "mtcars.sav") # SPSS
A particularly useful feature of rio is the ability to import from and export to compressed archives (e.g., zip), saving users the extra step of compressing a large exported file, e.g.:
export(mtcars, "mtcars.tsv.zip")
export()
can also write multiple data frames to respective sheets of an Excel workbook or an HTML file:
export(list(mtcars = mtcars, iris = iris), file = "mtcars.xlsx")
rio supports a wide range of file formats. To keep the package slim, several formats are supported via âSuggestsâ packages, which are not installed (or loaded) by default. You can check which formats are not supported via:
show_unsupported_formats()
You can install the suggested packages individually, depending your own needs. If you want to install all suggested packages:
The full list of supported formats is below:
Name Extensions / âformatâ Import Package Export Package Type Note Archive files (handled by tar) tar / tar.gz / tgz / tar.bz2 / tbz2 utils utils Default Bzip2 bz2 / bzip2 base base Default Gzip gz / gzip base base Default Zip files zip utils utils Default Ambiguous file format dat data.table Default Attempt as delimited text data CSVY (CSV + YAML metadata header) csvy data.table data.table Default Comma-separated data csv data.table data.table Default Comma-separated data (European) csv2 data.table data.table Default Data Interchange Format dif utils Default Epiinfo epiinfo / rec foreign Default Excel excel / xlsx readxl writexl Default Excel (Legacy) xls readxl Default Excel (Read only) xlsm / xltx / xltm readxl Default Fixed-width format data fwf readr utils Default Fortran data fortran utils Default No recognized extension Google Sheets googlesheets data.table Default As comma-separated data Minitab minitab / mtp foreign Default Pipe-separated data psv data.table data.table Default R syntax r base base Default SAS sas / sas7bdat haven haven Default Export is deprecated SAS XPORT xport / xpt haven haven Default SPSS sav / spss haven haven Default SPSS (compressed) zsav haven haven Default SPSS Portable por haven Default Saved R objects rda / rdata base base Default Serialized R objects rds base base Default Stata dta / stata haven haven Default Systat syd / systat foreign Default Tab-separated data / tsv / txt data.table data.table Default Text Representations of R Objects dump base base Default Weka Attribute-Relation File Format arff / weka foreign foreign Default XBASE database files dbf foreign foreign Default Apache Arrow (Parquet) parquet nanoparquet nanoparquet Suggest Clipboard clipboard clipr clipr Suggest default is tsv EViews eviews / wf1 hexView Suggest Fast Storage fst fst fst Suggest Feather R/Python interchange format feather arrow arrow Suggest Graphpad Prism pzfx pzfx pzfx Suggest HTML Tables htm / html xml2 xml2 Suggest JSON json jsonlite jsonlite Suggest Matlab mat / matlab rmatio rmatio Suggest OpenDocument Spreadsheet ods readODS readODS Suggest OpenDocument Spreadsheet (Flat) fods readODS readODS Suggest Serialized R objects (Quick) qs qs qs Suggest Shallow XML documents xml xml2 xml2 Suggest YAML yaml / yml yaml yaml SuggestAdditionally, any format that is not supported by rio but that has a known R implementation will produce an informative error message pointing to a package and import or export function. Unrecognized formats will yield a simple âUnrecognized file formatâ error.
The convert()
function links import()
and export()
by constructing a dataframe from the imported file and immediately writing it back to disk. convert()
invisibly returns the file name of the exported file, so that it can be used to programmatically access the new file.
convert("mtcars.sav", "mtcars.dta")
It is also possible to use rio on the command-line by calling Rscript
with the -e
(expression) argument. For example, to convert a file from Stata (.dta) to comma-separated values (.csv), simply do the following:
Rscript -e "rio::convert('iris.dta', 'iris.csv')"
import_list()
allows users to import a list of data frames from a multi-object file (such as an Excel workbook, .Rdata file, zip directory, or HTML file):
str(m <- import_list("mtcars.xlsx"))
## List of 2
## $ mtcars:'data.frame': 32 obs. of 11 variables:
## ..$ mpg : num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## ..$ cyl : num [1:32] 6 6 4 6 8 6 8 4 4 6 ...
## ..$ disp: num [1:32] 160 160 108 258 360 ...
## ..$ hp : num [1:32] 110 110 93 110 175 105 245 62 95 123 ...
## ..$ drat: num [1:32] 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## ..$ wt : num [1:32] 2.62 2.88 2.32 3.21 3.44 ...
## ..$ qsec: num [1:32] 16.5 17 18.6 19.4 17 ...
## ..$ vs : num [1:32] 0 0 1 1 0 1 0 1 1 1 ...
## ..$ am : num [1:32] 1 1 1 0 0 0 0 0 0 0 ...
## ..$ gear: num [1:32] 4 4 4 3 3 3 3 4 4 4 ...
## ..$ carb: num [1:32] 4 4 1 1 2 1 4 2 2 4 ...
## $ iris :'data.frame': 150 obs. of 5 variables:
## ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## ..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## ..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## ..$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## ..$ Species : chr [1:150] "setosa" "setosa" "setosa" "setosa" ...
export_list()
makes it easy to export a list of (possibly named) data frames to multiple files:
export_list(m, "%s.tsv") c("mtcars.tsv", "iris.tsv") %in% dir()
rio
.rio
.rio
.RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4