A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/kevinblighe/CorLevelPlot below:

kevinblighe/CorLevelPlot: Visualise correlation results and test significancies of these

Visualise correlation results and test significancies of these

Kevin Blighe 2019-01-29

CorLevelPlot provides a quick and colourful way to visualise statistically significant correlations between any combination of categorical and continuous variables. Moreover, the statistical significancies of these correlations are also provided.

Example CorLevelPlot plots

Install and load CorLevelPlot:

    devtools::install_github("kevinblighe/CorLevelPlot")
Example 1: WGCNA (weighted gene co-expression network analysis) simulated data:

The following code taken from Tutorial for the WGCNA package for R - 1. Simulation of expression and trait data

    # simulate trait-to-eigengene data
    no.obs <- 50
    ESturquoise <- 0; ESbrown <- -0.6; ESgreen <- 0.6; ESyellow <- 0
    ESvector <- c(ESturquoise, ESbrown, ESgreen, ESyellow)
    nGenes1 <- 3000
    simulateProportions1 <- c(0.2, 0.15, 0.08, 0.06, 0.04)
    set.seed(1)
    MEgreen <- rnorm(no.obs)
    scaledy <- MEgreen * ESgreen + sqrt(1 - ESgreen ^ 2) * rnorm(no.obs)
    y <- ifelse( scaledy > median(scaledy), 2, 1)
    MEturquoise <- ESturquoise * scaledy + sqrt(1 - ESturquoise ^ 2) * rnorm(no.obs)
    MEblue <- 0.6 * MEturquoise + sqrt(1 - 0.6 ^ 2) * rnorm(no.obs)
    MEbrown <- ESbrown * scaledy + sqrt(1 - ESbrown ^ 2) * rnorm(no.obs)
    MEyellow <- ESyellow * scaledy + sqrt(1 - ESyellow ^ 2) * rnorm(no.obs)
    ModuleEigengeneNetwork1 <- data.frame(y, MEturquoise, MEblue, MEbrown, MEgreen, MEyellow)

    CorLevelPlot(data = ModuleEigengeneNetwork1,
        x = c("y", "MEturquoise", "MEblue", "MEbrown", "MEgreen", "MEyellow"),
        y = c("y", "MEturquoise", "MEblue", "MEbrown", "MEgreen", "MEyellow"),
        titleX = "X correlates",
        cexTitleX = 3.0,
        rotTitleX = 0,
        colTitleX = "forestgreen",
        fontTitleX = 2,
        titleY = "Y\ncorrelates",
        cexTitleY = 4.0,
        rotTitleY = 100,
        colTitleY = "gold",
        fontTitleY = 4,
        cexLabX = 1.0,
        rotLabX = 45,
        colLabX = "grey20",
        fontLabX = 1,
        cexLabY = 1.0,
        rotLabY = 30,
        colLabY = "royalblue",
        fontLabY = 1,
        posLab = "bottomleft",
        col = c("blue4", "blue3", "blue2", "blue1", "white", "red1", "red2", "red3", "red4"),
        posColKey = "right",
        cexLabColKey = 1.2,
        cexCorval = 1.0,
        fontCorval = 4,
        main = "WGCNA example",
        scale = FALSE,
        cexMain = 2,
        rotMain = 360,
        colMain = "red4",
        fontMain = 4,
        corFUN = "pearson",
        corUSE = "pairwise.complete.obs",
        signifSymbols = c("***", "**", "*", ""),
        signifCutpoints = c(0, 0.001, 0.01, 0.05, 1),
        colFrame = "white",
        plotRsquared = FALSE)

Example 2: Iris dataset principal components analysis:
    library(datasets)
    data(iris)

    # order the categories in the 'Species' column
    # CorLevelPlot will conver these to 1, 2, 3, ...
    iris$Species <- as.numeric(factor(iris$Species, levels=c("setosa", "versicolor", "virginica")))

    i <- CorLevelPlot(data = iris,
        x = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"),
        y = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"),
        col = c("white", "cornsilk1", "yellow", "gold", "forestgreen", "darkgreen"),
        cexCorval = 1.2,
        fontCorval = 2,
        posLab = "all",
        rotLabX = 45,
        scale = TRUE,
        main = bquote(Iris~r^2~correlates),
        plotRsquared = TRUE)

    pca <- stats::prcomp(iris[,c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")])
    df <- data.frame(pca$x, iris)

    ii <- CorLevelPlot(data = df,
        x = c("PC1", "PC2", "PC3", "PC4"),
        y = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"),
        cexTitleX = 2.0,
        rotTitleX = 0,
        fontTitleX = 2,
        titleY = "Iris components",
        cexTitleY = 2.0,
        rotTitleY = 90,
        fontTitleY = 2,
        posLab = "topright",
        col = c("blue1", "skyblue", "white", "pink", "red1"),
        posColKey = "bottom",
        cexLabColKey = 1.5,
        cexCorval = 1.5,
        fontCorval = 2,
        rotLabX = 45,
        scale = TRUE,
        main = "Iris PC correlates",
        colFrame = "white",
        plotRsquared = FALSE)

    require(rasterVis)
    require(gridExtra)
    require(grid)

    grid.arrange(
        arrangeGrob(i,
            top = textGrob("A",
            x = unit(0.05,"npc"),
            y = unit(0.9,"npc"),
            just = c("left","top"),
            gp = gpar(fontsize=32))),
        arrangeGrob(ii,
            top = textGrob("B",
            x = unit(0.05,"npc"),
            y = unit(0.9,"npc"),
            just = c("left","top"),
            gp = gpar(fontsize=32))),
        ncol = 2)

Example 3: World Health Organization (WHO) MONICA data:
    library(DAAG)
    data(monica)

    # order the categorical variables
    monica$outcome <- as.numeric(factor(monica$outcome, levels=c("dead", "live")))

    monica$diabetes[monica$diabetes=="nk"] <- NA
    monica$diabetes <- as.numeric(factor(monica$diabetes, levels=c("n", "y")))

    monica$hichol[monica$hichol=="nk"] <- NA
    monica$hichol <- as.numeric(factor(monica$hichol, levels=c("n", "y")))

    monica$stroke[monica$stroke=="nk"] <- NA
    monica$stroke <- as.numeric(factor(monica$stroke, levels=c("n", "y")))

    monica$sex <- as.numeric(factor(monica$sex, levels=c("m", "f")))

    monica$yronset <- as.numeric(factor(monica$yronset, levels=c("85","86","87","88","89","90","91","92","93")))

    monica$highbp[monica$highbp=="nk"] <- NA
    monica$highbp <- as.numeric(factor(monica$highbp, levels=c("n", "y")))

    monica$angina[monica$angina=="nk"] <- NA
    monica$angina <- as.numeric(factor(monica$angina, levels=c("n", "y")))

    monica$hosp <- as.numeric(factor(monica$hosp, levels=c("n", "y")))

    CorLevelPlot(data = monica,
        x = c("outcome", "diabetes", "highbp", "hichol", "angina", "hosp"),
        y = c("sex", "age", "yronset"),
        col = c("darkblue", "blue2", "black", "red2", "darkred"),
        cexCorval = 1.5,
        colCorval = "white",
        fontCorval = 2,
        posLab = "bottomleft",
        rotLabX = 45,
        posColKey = "top",
        cexLabColKey = 1.2,
        scale = TRUE,
        main = "World Health Organization",
        colFrame = "white",
        plotRsquared = FALSE)

## R version 3.5.2 (2018-12-20)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
## 
## Matrix products: default
## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0
## LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0
## 
## locale:
##  [1] LC_CTYPE=pt_BR.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=pt_BR.UTF-8    
##  [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=pt_BR.UTF-8   
##  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] DAAG_1.22            gridExtra_2.3        rasterVis_0.45      
##  [4] latticeExtra_0.6-28  RColorBrewer_1.1-2   lattice_0.20-38     
##  [7] raster_2.8-4         sp_1.3-1             BiocInstaller_1.32.1
## [10] CorLevelPlot_0.99.0  knitr_1.21          
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.0        compiler_3.5.2    highr_0.7        
##  [4] prettyunits_1.0.2 remotes_2.0.2     tools_3.5.2      
##  [7] digest_0.6.18     pkgbuild_1.0.2    pkgload_1.0.2    
## [10] gtable_0.2.0      viridisLite_0.3.0 evaluate_0.12    
## [13] memoise_1.1.0     rlang_0.3.1       cli_1.0.1        
## [16] parallel_3.5.2    curl_3.3          yaml_2.2.0       
## [19] hexbin_1.27.2     xfun_0.4          withr_2.1.2      
## [22] stringr_1.3.1     desc_1.2.0        fs_1.2.6         
## [25] devtools_2.0.1    rprojroot_1.3-2   glue_1.3.0       
## [28] R6_2.3.0          processx_3.2.1    rmarkdown_1.11   
## [31] sessioninfo_1.1.1 callr_3.1.1       magrittr_1.5     
## [34] codetools_0.2-16  backports_1.1.3   ps_1.3.0         
## [37] htmltools_0.3.6   usethis_1.4.0     assertthat_0.2.0 
## [40] stringi_1.2.4     crayon_1.3.4      zoo_1.8-4

(Blighe 2018)

Blighe, Kevin. 2018. “CorLevelPlot: Visualise correlation results and test significancies of these.” https://github.com/kevinblighe.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4