Backtest trading strategies with Python.
Project website + Documentation | YouTube
$ pip install backtesting
from backtesting import Backtest, Strategy from backtesting.lib import crossover from backtesting.test import SMA, GOOG class SmaCross(Strategy): def init(self): price = self.data.Close self.ma1 = self.I(SMA, price, 10) self.ma2 = self.I(SMA, price, 20) def next(self): if crossover(self.ma1, self.ma2): self.buy() elif crossover(self.ma2, self.ma1): self.sell() bt = Backtest(GOOG, SmaCross, commission=.002, exclusive_orders=True) stats = bt.run() bt.plot()
Results in:
Start 2004-08-19 00:00:00
End 2013-03-01 00:00:00
Duration 3116 days 00:00:00
Exposure Time [%] 94.27
Equity Final [$] 68935.12
Equity Peak [$] 68991.22
Return [%] 589.35
Buy & Hold Return [%] 703.46
Return (Ann.) [%] 25.42
Volatility (Ann.) [%] 38.43
CAGR [%] 16.80
Sharpe Ratio 0.66
Sortino Ratio 1.30
Calmar Ratio 0.77
Alpha [%] 450.62
Beta 0.02
Max. Drawdown [%] -33.08
Avg. Drawdown [%] -5.58
Max. Drawdown Duration 688 days 00:00:00
Avg. Drawdown Duration 41 days 00:00:00
# Trades 93
Win Rate [%] 53.76
Best Trade [%] 57.12
Worst Trade [%] -16.63
Avg. Trade [%] 1.96
Max. Trade Duration 121 days 00:00:00
Avg. Trade Duration 32 days 00:00:00
Profit Factor 2.13
Expectancy [%] 6.91
SQN 1.78
Kelly Criterion 0.6134
_strategy SmaCross(n1=10, n2=20)
_equity_curve Equ...
_trades Size EntryB...
dtype: object
Find more usage examples in the documentation.
Before reporting bugs or posting to the discussion board, please read contributing guidelines, particularly the section about crafting useful bug reports and ```
-fencing your code. We thank you!
See alternatives.md for a list of alternative Python backtesting frameworks and related packages.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4