Quantitative studies of disparate impact face two key challenges:
The rar
package supports risk-adjusted regression, a framework for mitigating included-variable bias. It computes risk-adjusted disparities and performs an interpretable sensitivity analysis that can be used to assess the robustness of regression results to omitted-variable bias. See “Mitigating Included- and Omitted-Variable Bias in Estimates of Disparate” for more details.
You can install the latest stable release of rar
from CRAN with:
You can install the development version of rar
from GitHub with:
# install.packages("devtools") devtools::install_github("jgaeb/rar")
To perform risk-adjusted regression, use the sens()
function.
library(rar) # Generate some data set.seed(1) df <- tibble::tibble( group = factor( sample(c("a", "b"), 1000, replace = TRUE), levels = c("a", "b") ), p = runif(1000)^2, frisked = runif(1000) < p + 0.1 * (group != "a") ) # Compute risk-adjusted regression coefficients and perform sensitivity analysis sens(df, group, frisked, p, "a", 0.1, eta = 0.001, m = 10) #> # A tibble: 10 × 3 #> epsilon beta_min_b beta_max_b #> <dbl> <dbl> <dbl> #> 1 0 0.102 0.102 #> 2 0.0111 0.0752 0.125 #> 3 0.0222 0.0472 0.151 #> 4 0.0333 0.0185 0.178 #> 5 0.0444 -0.0106 0.207 #> 6 0.0556 -0.0394 0.236 #> 7 0.0667 -0.0677 0.265 #> 8 0.0778 -0.0950 0.295 #> 9 0.0889 -0.123 0.324 #> 10 0.1 -0.151 0.354
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4