parse_type extends the parse module (opposite of string.format()) with the following features:
A naming convention for related types that differ in cardinality. A cardinality field is a type name suffix in the format of a field. It allows parse format expression, ala:
"{person:Person}" #< Cardinality: 1 (one; the normal case) "{person:Person?}" #< Cardinality: 0..1 (zero or one = optional) "{persons:Person*}" #< Cardinality: 0..* (zero or more = many0) "{persons:Person+}" #< Cardinality: 1..* (one or more = many)
This naming convention mimics the relationship descriptions in UML diagrams.
Define an own type converter for numbers (integers):
# -- USE CASE: def parse_number(text): return int(text) parse_number.pattern = r"\d+" # -- REGULAR EXPRESSION pattern for type.
This is equivalent to:
import parse @parse.with_pattern(r"\d+") def parse_number(text): return int(text) assert hasattr(parse_number, "pattern") assert parse_number.pattern == r"\d+"
# -- USE CASE: Use the type converter with the parse module. schema = "Hello {number:Number}" parser = parse.Parser(schema, dict(Number=parse_number)) result = parser.parse("Hello 42") assert result is not None, "REQUIRE: text matches the schema." assert result["number"] == 42 result = parser.parse("Hello XXX") assert result is None, "MISMATCH: text does not match the schema."
Hint
The described functionality above is standard functionality of the parse module. It serves as introduction for the remaining cases.
Create an type converter for "ManyNumbers" (List, separated with commas) with cardinality "1..* = 1+" (many) from the type converter for a "Number".
# -- USE CASE: Create new type converter with a cardinality constraint. # CARDINALITY: many := one or more (1..*) from parse import Parser from parse_type import TypeBuilder parse_numbers = TypeBuilder.with_many(parse_number, listsep=",") schema = "List: {numbers:ManyNumbers}" parser = Parser(schema, dict(ManyNumbers=parse_numbers)) result = parser.parse("List: 1, 2, 3") assert result["numbers"] == [1, 2, 3]
Create an type converter for an "OptionalNumbers" with cardinality "0..1 = ?" (optional) from the type converter for a "Number".
# -- USE CASE: Create new type converter with cardinality constraint. # CARDINALITY: optional := zero or one (0..1) from parse import Parser from parse_type import TypeBuilder parse_optional_number = TypeBuilder.with_optional(parse_number) schema = "Optional: {number:OptionalNumber}" parser = Parser(schema, dict(OptionalNumber=parse_optional_number)) result = parser.parse("Optional: 42") assert result["number"] == 42 result = parser.parse("Optional: ") assert result["number"] == NoneEnumeration (Name-to-Value Mapping)
Create an type converter for an "Enumeration" from the description of the mapping as dictionary.
# -- USE CASE: Create a type converter for an enumeration. from parse import Parser from parse_type import TypeBuilder parse_enum_yesno = TypeBuilder.make_enum({"yes": True, "no": False}) parser = Parser("Answer: {answer:YesNo}", dict(YesNo=parse_enum_yesno)) result = parser.parse("Answer: yes") assert result["answer"] == True
Create an type converter for an "Enumeration" from the description of the mapping as an enumeration class (Python 3.4 enum or the enum34 backport; see also: PEP-0435).
# -- USE CASE: Create a type converter for enum34 enumeration class. # NOTE: Use Python 3.4 or enum34 backport. from parse import Parser from parse_type import TypeBuilder from enum import Enum class Color(Enum): red = 1 green = 2 blue = 3 parse_enum_color = TypeBuilder.make_enum(Color) parser = Parser("Select: {color:Color}", dict(Color=parse_enum_color)) result = parser.parse("Select: red") assert result["color"] is Color.redChoice (Name Enumeration)
A Choice data type allows to select one of several strings.
Create an type converter for an "Choice" list, a list of unique names (as string).
from parse import Parser from parse_type import TypeBuilder parse_choice_yesno = TypeBuilder.make_choice(["yes", "no"]) schema = "Answer: {answer:ChoiceYesNo}" parser = Parser(schema, dict(ChoiceYesNo=parse_choice_yesno)) result = parser.parse("Answer: yes") assert result["answer"] == "yes"Variant (Type Alternatives)
Sometimes you need a type converter that can accept text for multiple type converter alternatives. This is normally called a "variant" (or: union).
Create an type converter for an "Variant" type that accepts:
from parse import Parser, with_pattern from parse_type import TypeBuilder from enum import Enum class Color(Enum): red = 1 green = 2 blue = 3 @with_pattern(r"\d+") def parse_number(text): return int(text) # -- MAKE VARIANT: Alternatives of different type converters. parse_color = TypeBuilder.make_enum(Color) parse_variant = TypeBuilder.make_variant([parse_number, parse_color]) schema = "Variant: {variant:Number_or_Color}" parser = Parser(schema, dict(Number_or_Color=parse_variant)) # -- TEST VARIANT: With number, color and mismatch. result = parser.parse("Variant: 42") assert result["variant"] == 42 result = parser.parse("Variant: blue") assert result["variant"] is Color.blue result = parser.parse("Variant: __MISMATCH__") assert not resultExtended Parser with CardinalityField support
The parser extends the parse.Parser
and adds the following functionality:
Example:
# -- USE CASE: Parser with CardinalityField support. # NOTE: Automatically adds missing type variants with CardinalityField part. # USE: parse_number() type converter from above. from parse_type.cfparse import Parser # -- PREPARE: parser, adds missing type variant for cardinality 1..* (many) type_dict = dict(Number=parse_number) schema = "List: {numbers:Number+}" parser = Parser(schema, type_dict) assert "Number+" in type_dict, "Created missing type variant based on: Number" # -- USE: parser. result = parser.parse("List: 1, 2, 3") assert result["numbers"] == [1, 2, 3]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4