A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/janosh/pymatviz below:

janosh/pymatviz: A toolkit for visualizations in materials informatics.


pymatviz

If you use pymatviz in your research, see how to cite. Check out 23 existing papers using pymatviz for inspiration!

See pyproject.toml for available extras like pip install 'pymatviz[brillouin]' to render 3d Brillouin zones.

See the /api page.

See the Jupyter notebooks under examples/ for how to use pymatviz. PRs with additional examples are welcome! šŸ™

See pymatviz/ptable/plotly.py. The module supports heatmaps, heatmap splits (multiple values per element), histograms, scatter plots and line plots. All visualizations are interactive through Plotly and support displaying additional data on hover.

Warning

Version 0.16.0 of pymatviz dropped the matplotlib-based functions in ptable_matplotlib.py in #270. Please use the plotly-based functions shown below instead which have feature parity, interactivity and better test coverage.

Dash app using ptable_heatmap_plotly()

See examples/mprester_ptable.ipynb.

2022-07-28-ptable_heatmap_plotly-dash-example.mp4

Visualize 2D or 3D relationships between compositions and properties using multiple embedding and dimensionality reduction techniques:

Embedding methods: One-hot encoding of element fractions, Magpie features (elemental properties), Matscholar element embeddings, MEGNet element embeddings

Dimensionality reduction methods: PCA (linear), t-SNE (non-linear), UMAP (non-linear), Isomap (non-linear), Kernel PCA (non-linear)

Example usage:

import pymatviz as pmv
from pymatgen.core import Composition

compositions = ("Fe2O3", "Al2O3", "SiO2", "TiO2")

# Create embeddings
embeddings = pmv.cluster.composition.one_hot_encode(compositions)
comp_emb_map = dict(zip(compositions, embeddings, strict=True))

# Plot with optional property coloring
fig = pmv.cluster_compositions(
    compositions=comp_emb_map,
    properties=[1.0, 2.0, 3.0, 4.0],  # Optional property values
    prop_name="Property",  # Optional property label
    embedding_method="one-hot",  # or "magpie", "matscholar_el", "megnet_el", etc.
    projection_method="pca",  # or "tsne", "umap", "isomap", "kernel_pca", etc.
    show_chem_sys="shape",  # works best for small number of compositions; "color" | "shape" | "color+shape" | None
    n_components=2,  # or 3 for 3D plots
)
fig.show()

On the roadmap but no ETA yet.

See pymatviz/structure/plotly.py.

See pymatviz/brillouin.py.

See pymatviz/xrd.py.

Radial Distribution Functions

See pymatviz/rdf/plotly.py.

See pymatviz/coordination/plotly.py.

See pymatviz/sunburst.py.

See pymatviz/treemap/chem_sys.py.

chem_sys_treemap(["FeO", "Fe2O3", "LiPO4", ...]) chem_sys_treemap(["FeO", "Fe2O3", "LiPO4", ...], group_by="formula") chem_env_treemap(structures) chem_env_treemap(structures, max_cells_cn=3, max_cells_ce=4) py_pkg_treemap("pymatviz") py_pkg_treemap(["pymatviz", "torch_sim", "pymatgen"])

See pymatviz/rainclouds.py.

See pymatviz/sankey.py.

See pymatviz/bar.py.

See pymatviz/histogram.py.

See pymatviz/scatter.py.

density_scatter_plotly(df, x=x_col, y=y_col, ...) density_scatter_plotly(df, x=x_col, y=y_col, ...) density_scatter(xs, ys, ...) density_scatter_with_hist(xs, ys, ...) density_hexbin(xs, ys, ...) density_hexbin_with_hist(xs, ys, ...)

See pymatviz/uncertainty.py.

See pymatviz/classify/confusion_matrix.py.

See pymatviz/classify/curves.py.

See citation.cff or cite the Zenodo record using the following BibTeX entry:

@software{riebesell_pymatviz_2022,
  title = {Pymatviz: visualization toolkit for materials informatics},
  author = {Riebesell, Janosh and Yang, Haoyu and Goodall, Rhys and Baird, Sterling G.},
  date = {2022-10-01},
  year = {2022},
  doi = {10.5281/zenodo.7486816},
  url = {https://github.com/janosh/pymatviz},
  note = {10.5281/zenodo.7486816 - https://github.com/janosh/pymatviz},
  urldate = {2023-01-01}, % optional, replace with your date of access
  version = {0.8.2}, % replace with the version you use
}

Sorted by number of citations, then year. Last updated 2025-05-07. Auto-generated from Google Scholar. Manual additions via PR welcome.

  1. C Zeni, R Pinsler, D Zügner et al. (2023). Mattergen: a generative model for inorganic materials design (cited by 134)
  2. J Riebesell, REA Goodall, P Benner et al. (2023). Matbench Discovery--A framework to evaluate machine learning crystal stability predictions (cited by 53)
  3. L Barroso-Luque, M Shuaibi, X Fu et al. (2024). Open materials 2024 (omat24) inorganic materials dataset and models (cited by 48)
  4. C Chen, DT Nguyen, SJ Lee et al. (2024). Accelerating computational materials discovery with machine learning and cloud high-performance computing: from large-scale screening to experimental validation (cited by 43)
  5. M Giantomassi, G Materzanini (2024). Systematic assessment of various universal machine‐learning interatomic potentials (cited by 22)
  6. AA Naik, C Ertural, P Benner et al. (2023). A quantum-chemical bonding database for solid-state materials (cited by 15)
  7. K Li, AN Rubungo, X Lei et al. (2025). Probing out-of-distribution generalization in machine learning for materials (cited by 9)
  8. A Kapeliukha, RA Mayo (2025). MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations (cited by 3)
  9. N Tuchinda, CA Schuh (2025). Grain Boundary Segregation and Embrittlement of Aluminum Binary Alloys from First Principles (cited by 2)
  10. A Onwuli, KT Butler, A Walsh (2024). Ionic species representations for materials informatics (cited by 2)
  11. A Peng, MY Guo (2025). The OpenLAM Challenges (cited by 1)
  12. F Therrien, JA Haibeh (2025). OBELiX: A curated dataset of crystal structures and experimentally measured ionic conductivities for lithium solid-state electrolytes (cited by 1)
  13. Aaron D. Kaplan, Runze Liu, Ji Qi et al. (2025). A Foundational Potential Energy Surface Dataset for Materials
  14. Fei Shuang, Zixiong Wei, Kai Liu et al. (2025). Universal machine learning interatomic potentials poised to supplant DFT in modeling general defects in metals and random alloys
  15. Yingheng Tang, Wenbin Xu, Jie Cao et al. (2025). MatterChat: A Multi-Modal LLM for Material Science
  16. Liming Wu, Wenbing Huang, Rui Jiao et al. (2025). Siamese Foundation Models for Crystal Structure Prediction
  17. K Yan, M Bohde, A Kryvenko (2025). A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures
  18. N Tuchinda, CA Schuh (2025). A Grain Boundary Embrittlement Genome for Substitutional Cubic Alloys
  19. Daniel W. Davies, Keith T. Butler, Adam J. Jackson et al. (2024). SMACT: Semiconducting Materials by Analogy and Chemical Theory
  20. Hui Zheng, Eric Sivonxay, Rasmus Christensen et al. (2024). The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity
  21. HH Li, Q Chen, G Ceder (2024). Voltage Mining for (De) lithiation-Stabilized Cathodes and a Machine Learning Model for Li-Ion Cathode Voltage
  22. Janosh Riebesell, Ilyes Batatia, Philipp Benner et al. (2023). A foundation model for atomistic materials chemistry
  23. Jack Douglas Sundberg (2022). A New Framework for Material Informatics and Its Application Toward Electride-Halide Material Systems

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4