A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/ionelmc/python-hunter below:

ionelmc/python-hunter: Hunter is a flexible code tracing toolkit.

Hunter is a flexible code tracing toolkit, not for measuring coverage, but for debugging, logging, inspection and other nefarious purposes. It has a simple Python API, a convenient terminal API and a CLI tool to attach to processes.

pip install hunter

https://python-hunter.readthedocs.io/

Basic use involves passing various filters to the trace option. An example:

import hunter
hunter.trace(module='posixpath', action=hunter.CallPrinter)

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
         /usr/lib/python3.6/posixpath.py:75    call      => join(a='a')
         /usr/lib/python3.6/posixpath.py:80    line         a = os.fspath(a)
         /usr/lib/python3.6/posixpath.py:81    line         sep = _get_sep(a)
         /usr/lib/python3.6/posixpath.py:41    call         => _get_sep(path='a')
         /usr/lib/python3.6/posixpath.py:42    line            if isinstance(path, bytes):
         /usr/lib/python3.6/posixpath.py:45    line            return '/'
         /usr/lib/python3.6/posixpath.py:45    return       <= _get_sep: '/'
         /usr/lib/python3.6/posixpath.py:82    line         path = a
         /usr/lib/python3.6/posixpath.py:83    line         try:
         /usr/lib/python3.6/posixpath.py:84    line         if not p:
         /usr/lib/python3.6/posixpath.py:86    line         for b in map(os.fspath, p):
         /usr/lib/python3.6/posixpath.py:87    line         if b.startswith(sep):
         /usr/lib/python3.6/posixpath.py:89    line         elif not path or path.endswith(sep):
         /usr/lib/python3.6/posixpath.py:92    line         path += sep + b
         /usr/lib/python3.6/posixpath.py:86    line         for b in map(os.fspath, p):
         /usr/lib/python3.6/posixpath.py:96    line         return path
         /usr/lib/python3.6/posixpath.py:96    return    <= join: 'a/b'
'a/b'

In a terminal it would look like:

Another useful scenario is to ignore all standard modules and force colors to make them stay even if the output is redirected to a file.

import hunter
hunter.trace(stdlib=False, action=hunter.CallPrinter(force_colors=True))

Output format can be controlled with "actions". There's an alternative CodePrinter action that doesn't handle nesting (it was the default action until Hunter 2.0).

If filters match then action will be run. Example:

import hunter
hunter.trace(module='posixpath', action=hunter.CodePrinter)

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
         /usr/lib/python3.6/posixpath.py:75    call      def join(a, *p):
         /usr/lib/python3.6/posixpath.py:80    line          a = os.fspath(a)
         /usr/lib/python3.6/posixpath.py:81    line          sep = _get_sep(a)
         /usr/lib/python3.6/posixpath.py:41    call      def _get_sep(path):
         /usr/lib/python3.6/posixpath.py:42    line          if isinstance(path, bytes):
         /usr/lib/python3.6/posixpath.py:45    line              return '/'
         /usr/lib/python3.6/posixpath.py:45    return            return '/'
                                               ...       return value: '/'
         /usr/lib/python3.6/posixpath.py:82    line          path = a
         /usr/lib/python3.6/posixpath.py:83    line          try:
         /usr/lib/python3.6/posixpath.py:84    line              if not p:
         /usr/lib/python3.6/posixpath.py:86    line              for b in map(os.fspath, p):
         /usr/lib/python3.6/posixpath.py:87    line                  if b.startswith(sep):
         /usr/lib/python3.6/posixpath.py:89    line                  elif not path or path.endswith(sep):
         /usr/lib/python3.6/posixpath.py:92    line                      path += sep + b
         /usr/lib/python3.6/posixpath.py:86    line              for b in map(os.fspath, p):
         /usr/lib/python3.6/posixpath.py:96    line          return path
         /usr/lib/python3.6/posixpath.py:96    return        return path
                                               ...       return value: 'a/b'
'a/b'

Another useful action is the VarsPrinter:

import hunter
# note that this kind of invocation will also use the default `CallPrinter` action
hunter.trace(hunter.Q(module='posixpath', action=hunter.VarsPrinter('path')))

import os
os.path.join('a', 'b')

That would result in:

>>> os.path.join('a', 'b')
     /usr/lib/python3.6/posixpath.py:75    call      => join(a='a')
     /usr/lib/python3.6/posixpath.py:80    line         a = os.fspath(a)
     /usr/lib/python3.6/posixpath.py:81    line         sep = _get_sep(a)
     /usr/lib/python3.6/posixpath.py:41    call      [path => 'a']
     /usr/lib/python3.6/posixpath.py:41    call         => _get_sep(path='a')
     /usr/lib/python3.6/posixpath.py:42    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:42    line            if isinstance(path, bytes):
     /usr/lib/python3.6/posixpath.py:45    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:45    line            return '/'
     /usr/lib/python3.6/posixpath.py:45    return    [path => 'a']
     /usr/lib/python3.6/posixpath.py:45    return       <= _get_sep: '/'
     /usr/lib/python3.6/posixpath.py:82    line         path = a
     /usr/lib/python3.6/posixpath.py:83    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:83    line         try:
     /usr/lib/python3.6/posixpath.py:84    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:84    line         if not p:
     /usr/lib/python3.6/posixpath.py:86    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:86    line         for b in map(os.fspath, p):
     /usr/lib/python3.6/posixpath.py:87    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:87    line         if b.startswith(sep):
     /usr/lib/python3.6/posixpath.py:89    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:89    line         elif not path or path.endswith(sep):
     /usr/lib/python3.6/posixpath.py:92    line      [path => 'a']
     /usr/lib/python3.6/posixpath.py:92    line         path += sep + b
     /usr/lib/python3.6/posixpath.py:86    line      [path => 'a/b']
     /usr/lib/python3.6/posixpath.py:86    line         for b in map(os.fspath, p):
     /usr/lib/python3.6/posixpath.py:96    line      [path => 'a/b']
     /usr/lib/python3.6/posixpath.py:96    line         return path
     /usr/lib/python3.6/posixpath.py:96    return    [path => 'a/b']
     /usr/lib/python3.6/posixpath.py:96    return    <= join: 'a/b'
'a/b'

In a terminal it would look like:

You can give it a tree-like configuration where you can optionally configure specific actions for parts of the tree (like dumping variables or a pdb set_trace):

from hunter import trace, Q, Debugger
from pdb import Pdb

trace(
    # drop into a Pdb session if ``foo.bar()`` is called
    Q(module="foo", function="bar", kind="call", action=Debugger(klass=Pdb))
    |  # or
    Q(
        # show code that contains "mumbo.jumbo" on the current line
        lambda event: event.locals.get("mumbo") == "jumbo",
        # and it's not in Python's stdlib
        stdlib=False,
        # and it contains "mumbo" on the current line
        source__contains="mumbo"
    )
)

import foo
foo.func()

With a foo.py like this:

def bar():
    execution_will_get_stopped  # cause we get a Pdb session here

def func():
    mumbo = 1
    mumbo = "jumbo"
    print("not shown in trace")
    print(mumbo)
    mumbo = 2
    print(mumbo) # not shown in trace
    bar()

We get:

>>> foo.func()
not shown in trace
    /home/ionel/osp/python-hunter/foo.py:8     line          print(mumbo)
jumbo
    /home/ionel/osp/python-hunter/foo.py:9     line          mumbo = 2
2
    /home/ionel/osp/python-hunter/foo.py:1     call      def bar():
> /home/ionel/osp/python-hunter/foo.py(2)bar()
-> execution_will_get_stopped  # cause we get a Pdb session here
(Pdb)

In a terminal it would look like:

In similar fashion to strace Hunter can trace other processes, eg:

hunter-trace --gdb -p 123

If you wanna play it safe (no messy GDB) then add this in your code:

from hunter import remote
remote.install()

Then you can do:

hunter-trace -p 123

See docs on the remote feature.

Note: Windows ain't supported.

Environment variable activation

For your convenience environment variable activation is available. Just run your app like this:

PYTHONHUNTER="module='os.path'" python yourapp.py

On Windows you'd do something like:

set PYTHONHUNTER=module='os.path'
python yourapp.py

The activation works with a clever .pth file that checks for that env var presence and before your app runs does something like this:

from hunter import *
trace(<whatever-you-had-in-the-PYTHONHUNTER-env-var>)

Note that Hunter is activated even if the env var is empty, eg: PYTHONHUNTER="".

Environment variable configuration

Sometimes you always use the same options (like stdlib=False or force_colors=True). To save typing you can set something like this in your environment:

PYTHONHUNTERCONFIG="stdlib=False,force_colors=True"

This is the same as PYTHONHUNTER="stdlib=False,action=CallPrinter(force_colors=True)".

Notes:

Hunter supports a flexible query DSL, see the introduction.

To run the all tests run:

tox

Hunter doesn't do everything. As a design goal of this library some things are made intentionally austere and verbose (to avoid complexity, confusion and inconsistency). This has few consequences:

You should look at it like it's a tool to help you understand and debug big applications, or a framework ridding you of the boring parts of settrace, not something that helps you learn Python.

There's some obvious overlap with smiley but there are few fundamental differences:

In contrast, Hunter is very simple:

Pytrace is another tracer tool. It seems quite similar to Smiley - it uses a sqlite database for the events, threads and IPC, thus it's reasonable to expect the same kind of problems.

Why not PySnooper or snoop?

snoop is a refined version of PySnooper. Both are more suited to tracing small programs or functions as the output is more verbose and less suited to the needs of tracing a big application where Hunter provides more flexible setup, filtering capabilities, speed and brevity.

For purposes of debugging coverage is a great tool but only as far as "debugging by looking at what code is (not) run". Checking branch coverage is good but it will only get you as far.

From the other perspective, you'd be wondering if you could use Hunter to measure coverage-like things. You could do it but for that purpose Hunter is very "rough": it has no builtin storage. You'd have to implement your own storage. You can do it but it wouldn't give you any advantage over making your own tracer if you don't need to "pre-filter" whatever you're recording.

In other words, filtering events is the main selling point of Hunter - it's fast (cython implementation) and the query API is flexible enough.

Noteworthy usages or Hunter (submit a PR with your project if you built a tool that relies on hunter):

More projects using it at https://github.com/ionelmc/python-hunter/network/dependents


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4