dunlin
: Tools for Clinical Trial Data Wrangling
dunlin
provides a variety of data tools to reformat and manipulate a subset of the tables in a data set.
# install.packages("pak") pak::pak("insightsengineering/dunlin@*release")
Alternatively, you might also use the development version.
# install.packages("pak") pak::pak("insightsengineering/dunlin")
library(dunlin) df1 <- data.frame( "id" = c("a", "b", NA, "a", "k", "x"), "id2" = factor(c("f1", "f2", NA, NA, "f1", "f1")), "val" = letters[1:6] ) df2 <- data.frame( "id" = c("a", "b", NA, "a", "k", "x"), "id2" = factor(c("f1", "f2", NA, NA, "f1", "f1")), "num" = 1:6 ) db <- list(df1 = df1, df2 = df2) prop_db <- propagate(db, "df1", "val", c("id", "id2"))
which returns prop_db
as
$df1
id id2 val
1 a f1 a
2 b f2 b
3 <NA> <NA> c
4 a <NA> d
5 k f1 e
6 x f1 f
$df2
id id2 num val
1 a f1 1 a
2 b f2 2 b
3 <NA> <NA> 3 c
4 a <NA> 4 d
5 k f1 5 e
6 x f1 6 f
new_format <- list( df1 = list( id = rule("No ID available" = c("", NA, "<Missing>")), id2 = rule("<Missing>" = c("", NA, "<Missing>")) ) ) res <- reformat(prop_db, new_format, .na_last = TRUE)
which result in res
as
$df1
id id2 val
1 a f1 a
2 b f2 b
3 No ID available <Missing> c
4 a <Missing> d
5 k f1 e
6 x f1 f
$df2
id id2 num val
1 a f1 1 a
2 b f2 2 b
3 <NA> <NA> 3 c
4 a <NA> 4 d
5 k f1 5 e
6 x f1 6 f
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4