The goal of inlabru is to facilitate spatial modeling using integrated nested Laplace approximation via the R-INLA package. Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. See Fabian E. Bachl, Finn Lindgren, David L. Borchers, and Janine B. Illian (2019), inlabru: an R package for Bayesian spatial modelling from ecological survey data, Methods in Ecology and Evolution, British Ecological Society, 10, 760–766, doi:10.1111/2041-210X.13168, and citation("inlabru")
.
The inlabru.org website has links to old tutorials with code examples for versions up to 2.1.13. For later versions, updated versions of these tutorials, as well as new examples, can be found at https://inlabru-org.github.io/inlabru/articles/
You can install the current CRAN version version of inlabru:
options(repos = c( INLA = "https://inla.r-inla-download.org/R/testing", getOption("repos") )) install.packages("inlabru")
You can install the latest bugfix release of inlabru from GitHub with:
# install.packages("pak") pak::repo_add(INLA = "https://inla.r-inla-download.org/R/testing") pak::pkg_install("inlabru-org/inlabru@stable")
You can install the development version of inlabru from GitHub with
pak::pkg_install("inlabru-org/inlabru")
or track the development version builds via inlabru-org.r-universe.dev:
# Enable universe(s) by inlabru-org pak::repo_add(inlabruorg = "https://inlabru-org.r-universe.dev") pak::pkg_install("inlabru")
This will pick the r-universe version if it is more recent than the CRAN version.
Installation usingremotes
You can install the latest bugfix release of inlabru from GitHub with:
# install.packages("remotes") remotes::install_github("inlabru-org/inlabru", ref = "stable")
You can install the development version of inlabru from GitHub with
remotes::install_github("inlabru-org/inlabru", ref = "devel")
or track the development version builds via inlabru-org.r-universe.dev:
# Enable universe(s) by inlabru-org options(repos = c( inlabruorg = "https://inlabru-org.r-universe.dev", INLA = "https://inla.r-inla-download.org/R/testing", CRAN = "https://cloud.r-project.org" )) # Install some packages install.packages("inlabru")
This is a basic example which shows how fit a simple spatial Log Gaussian Cox Process (LGCP) and predicts its intensity:
# Load libraries library(INLA) #> Loading required package: Matrix #> This is INLA_25.06.22-1 built 2025-06-22 16:17:48 UTC. #> - See www.r-inla.org/contact-us for how to get help. #> - List available models/likelihoods/etc with inla.list.models() #> - Use inla.doc(<NAME>) to access documentation library(inlabru) #> Loading required package: fmesher library(fmesher) library(ggplot2) # Construct latent model components matern <- inla.spde2.pcmatern( gorillas_sf$mesh, prior.sigma = c(0.1, 0.01), prior.range = c(0.01, 0.01) ) cmp <- ~ mySmooth(geometry, model = matern) + Intercept(1) # Fit LGCP model # This particular bru/bru_obs combination has a shortcut function lgcp() as well fit <- bru( cmp, bru_obs( formula = geometry ~ ., family = "cp", data = gorillas_sf$nests, samplers = gorillas_sf$boundary, domain = list(geometry = gorillas_sf$mesh) ), options = list(control.inla = list(int.strategy = "eb")) ) # Predict Gorilla nest intensity lambda <- predict( fit, fm_pixels(gorillas_sf$mesh, mask = gorillas_sf$boundary), ~ exp(mySmooth + Intercept) )
# Plot the result ggplot() + geom_fm(data = gorillas_sf$mesh) + gg(lambda, geom = "tile") + gg(gorillas_sf$nests, color = "red", size = 0.5, alpha = 0.5) + ggtitle("Nest intensity per km squared") + xlab("") + ylab("")
Nest intensity per km squared
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4