A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/hustvl/MIMDet/tree/v1.0.0 below:

GitHub - hustvl/MIMDet at v1.0.0

Unleashing Vanilla Vision Transformer with Masked Image Modeling for Object Detection

Yuxin Fang1 *, Shusheng Yang1 *, Shijie Wang1 *, Yixiao Ge2, Ying Shan2, Xinggang Wang1 📧,

1 School of EIC, HUST, 2 ARC Lab, Tencent PCG.

(*) equal contribution, (📧) corresponding author.

ArXiv Preprint (arXiv 2204.02964)

This repo provides code and pretrained models for MIMDet (Masked Image Modeling for Detection).

Model Sample Ratio Schedule Aug Box AP Mask AP #params config model / log MIMDet-ViT-B 0.25 3x [480-800, 1333] w/crop 49.9 / 49.9 (8x GPUs) 44.7 / 44.6 (8x GPUs) 127.56M config / config (8x GPUs) model / log, model / log (8x GPUs) MIMDet-ViT-B 0.5 3x [480-800, 1333] w/crop 51.5 46.0 127.56M config model / log MIMDet-ViT-L 0.5 3x [480-800, 1333] w/crop 53.3 47.5 345.27M config model / log Benchmarking-ViT-B - 25ep [1024, 1024] LSJ(0.1-2) 48.0 43.0 118.67M config model / log Benchmarking-ViT-B - 50ep [1024, 1024] LSJ(0.1-2) 50.2 44.9 118.67M config model / log Benchmarking-ViT-B - 100ep [1024, 1024] LSJ(0.1-2) 50.4 44.9 118.67M config model / log

Notes:

git clone https://github.com/hustvl/MIMDet.git
cd MIMDet
conda create -n mimdet python=3.9
conda activate mimdet
# inference
python lazyconfig_train_net.py --config-file <CONFIG_FILE> --num-gpus <GPU_NUM> --eval-only train.init_checkpoint=<MODEL_PATH>

# inference with 100% sample ratio (see Table 2 in our paper for a detailed analysis)
python lazyconfig_train_net.py --config-file <CONFIG_FILE> --num-gpus <GPU_NUM> --eval-only train.init_checkpoint=<MODEL_PATH> model.backbone.bottom_up.sample_ratio=1.0

Download the full MAE pretrained (including the decoder) ViT-B Model and ViT-L Model checkpoint. See MAE repo-issues-8.

# single-machine training
python lazyconfig_train_net.py --config-file <CONFIG_FILE> --num-gpus <GPU_NUM> mae_checkpoint.path=<MAE_MODEL_PATH>

# multi-machine training
python lazyconfig_train_net.py --config-file <CONFIG_FILE> --num-gpus <GPU_NUM> --num-machines <MACHINE_NUM> --master_addr <MASTER_ADDR> --master_port <MASTER_PORT> mae_checkpoint.path=<MAE_MODEL_PATH>

This project is based on MAE, Detectron2 and timm. Thanks for their wonderful works.

MIMDet is released under the MIT License.

If you find our paper and code useful in your research, please consider giving a star ⭐ and citation 📝 :)

@article{MIMDet,
  title={Unleashing Vanilla Vision Transformer with Masked Image Modeling for Object Detection},
  author={Fang, Yuxin and Yang, Shusheng and Wang, Shijie and Ge, Yixiao and Shan, Ying and Wang, Xinggang},
  journal={arXiv preprint arXiv:2204.02964},
  year={2022}
}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4