Note
MCP Toolbox for Databases is currently in beta, and may see breaking changes until the first stable release (v1.0).
MCP Toolbox for Databases is an open source MCP server for databases. It enables you to develop tools easier, faster, and more securely by handling the complexities such as connection pooling, authentication, and more.
This README provides a brief overview. For comprehensive details, see the full documentation.
Note
This solution was originally named “Gen AI Toolbox for Databases” as its initial development predated MCP, but was renamed to align with recently added MCP compatibility.
Toolbox helps you build Gen AI tools that let your agents access data in your database. Toolbox provides:
⚡ Supercharge Your Workflow with an AI Database Assistant ⚡
Stop context-switching and let your AI assistant become a true co-developer. By connecting your IDE to your databases with MCP Toolbox, you can delegate complex and time-consuming database tasks, allowing you to build faster and focus on what matters. This isn't just about code completion; it's about giving your AI the context it needs to handle the entire development lifecycle.
Here’s how it will save you time:
Learn how to connect your AI tools (IDEs) to Toolbox using MCP.
Toolbox sits between your application's orchestration framework and your database, providing a control plane that is used to modify, distribute, or invoke tools. It simplifies the management of your tools by providing you with a centralized location to store and update tools, allowing you to share tools between agents and applications and update those tools without necessarily redeploying your application.
For the latest version, check the releases page and use the following instructions for your OS and CPU architecture.
BinaryTo install Toolbox as a binary:
# see releases page for other versions export VERSION=0.12.0 curl -O https://storage.googleapis.com/genai-toolbox/v$VERSION/linux/amd64/toolbox chmod +x toolboxContainer image You can also install Toolbox as a container:
# see releases page for other versions export VERSION=0.12.0 docker pull us-central1-docker.pkg.dev/database-toolbox/toolbox/toolbox:$VERSIONHomebrew
To install Toolbox using Homebrew on macOS or Linux:
Compile from sourceTo install from source, ensure you have the latest version of Go installed, and then run the following command:
go install github.com/googleapis/genai-toolbox@v0.12.0
Configure a tools.yaml
to define your tools, and then execute toolbox
to start the server:
./toolbox --tools-file "tools.yaml"
Note
Toolbox enables dynamic reloading by default. To disable, use the --disable-reload
flag.
If you installed Toolbox using Homebrew, the toolbox
binary is available in your system path. You can start the server with the same command:
toolbox --tools-file "tools.yaml"
You can use toolbox help
for a full list of flags! To stop the server, send a terminate signal (ctrl+c
on most platforms).
For more detailed documentation on deploying to different environments, check out the resources in the How-to section
Integrating your applicationOnce your server is up and running, you can load the tools into your application. See below the list of Client SDKs for using various frameworks:
Python (Github)CoreJavascript/Typescript (Github)
Install Toolbox Core SDK:
Load tools:
from toolbox_core import ToolboxClient # update the url to point to your server async with ToolboxClient("http://127.0.0.1:5000") as client: # these tools can be passed to your application! tools = await client.load_toolset("toolset_name")For more detailed instructions on using the Toolbox Core SDK, see the project's README.
LangChain / LangGraphLlamaIndex
Install Toolbox LangChain SDK:
pip install toolbox-langchainLoad tools:
from toolbox_langchain import ToolboxClient # update the url to point to your server async with ToolboxClient("http://127.0.0.1:5000") as client: # these tools can be passed to your application! tools = client.load_toolset()For more detailed instructions on using the Toolbox LangChain SDK, see the project's README.
Install Toolbox Llamaindex SDK:
pip install toolbox-llamaindexLoad tools:
from toolbox_llamaindex import ToolboxClient # update the url to point to your server async with ToolboxClient("http://127.0.0.1:5000") as client: # these tools can be passed to your application! tools = client.load_toolset()For more detailed instructions on using the Toolbox Llamaindex SDK, see the project's README.
CoreGo (Github)LangChain / LangGraph
Install Toolbox Core SDK:
npm install @toolbox-sdk/coreLoad tools:
import { ToolboxClient } from '@toolbox-sdk/core'; // update the url to point to your server const URL = 'http://127.0.0.1:5000'; let client = new ToolboxClient(URL); // these tools can be passed to your application! const tools = await client.loadToolset('toolsetName');For more detailed instructions on using the Toolbox Core SDK, see the project's README.
Genkit
Install Toolbox Core SDK:
npm install @toolbox-sdk/coreLoad tools:
import { ToolboxClient } from '@toolbox-sdk/core'; // update the url to point to your server const URL = 'http://127.0.0.1:5000'; let client = new ToolboxClient(URL); // these tools can be passed to your application! const toolboxTools = await client.loadToolset('toolsetName'); // Define the basics of the tool: name, description, schema and core logic const getTool = (toolboxTool) => tool(currTool, { name: toolboxTool.getName(), description: toolboxTool.getDescription(), schema: toolboxTool.getParamSchema() }); // Use these tools in your Langchain/Langraph applications const tools = toolboxTools.map(getTool);
Install Toolbox Core SDK:
npm install @toolbox-sdk/coreLoad tools:
import { ToolboxClient } from '@toolbox-sdk/core'; import { genkit } from 'genkit'; // Initialise genkit const ai = genkit({ plugins: [ googleAI({ apiKey: process.env.GEMINI_API_KEY || process.env.GOOGLE_API_KEY }) ], model: googleAI.model('gemini-2.0-flash'), }); // update the url to point to your server const URL = 'http://127.0.0.1:5000'; let client = new ToolboxClient(URL); // these tools can be passed to your application! const toolboxTools = await client.loadToolset('toolsetName'); // Define the basics of the tool: name, description, schema and core logic const getTool = (toolboxTool) => ai.defineTool({ name: toolboxTool.getName(), description: toolboxTool.getDescription(), schema: toolboxTool.getParamSchema() }, toolboxTool) // Use these tools in your Genkit applications const tools = toolboxTools.map(getTool);
CoreLangChain Go
Install Toolbox Go SDK:
go get github.com/googleapis/mcp-toolbox-sdk-goLoad tools:
package main import ( "github.com/googleapis/mcp-toolbox-sdk-go/core" "context" ) func main() { // Make sure to add the error checks // update the url to point to your server URL := "http://127.0.0.1:5000"; ctx := context.Background() client, err := core.NewToolboxClient(URL) // Framework agnostic tools tools, err := client.LoadToolset("toolsetName", ctx) }For more detailed instructions on using the Toolbox Go SDK, see the project's README.
Genkit
Install Toolbox Go SDK:
go get github.com/googleapis/mcp-toolbox-sdk-goLoad tools:
package main import ( "context" "encoding/json" "github.com/googleapis/mcp-toolbox-sdk-go/core" "github.com/tmc/langchaingo/llms" ) func main() { // Make sure to add the error checks // update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() client, err := core.NewToolboxClient(URL) // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) // Fetch the tool's input schema inputschema, err := tool.InputSchema() var paramsSchema map[string]any _ = json.Unmarshal(inputschema, ¶msSchema) // Use this tool with LangChainGo langChainTool := llms.Tool{ Type: "function", Function: &llms.FunctionDefinition{ Name: tool.Name(), Description: tool.Description(), Parameters: paramsSchema, }, } }Go GenAI
Install Toolbox Go SDK:
go get github.com/googleapis/mcp-toolbox-sdk-goLoad tools:
package main import ( "context" "encoding/json" "github.com/firebase/genkit/go/ai" "github.com/firebase/genkit/go/genkit" "github.com/googleapis/mcp-toolbox-sdk-go/core" "github.com/googleapis/mcp-toolbox-sdk-go/tbgenkit" "github.com/invopop/jsonschema" ) func main() { // Make sure to add the error checks // Update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() g, err := genkit.Init(ctx) client, err := core.NewToolboxClient(URL) // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) // Convert the tool using the tbgenkit package // Use this tool with Genkit Go genkitTool, err := tbgenkit.ToGenkitTool(tool, g) if err != nil { log.Fatalf("Failed to convert tool: %v\n", err) } }OpenAI Go
Install Toolbox Go SDK:
go get github.com/googleapis/mcp-toolbox-sdk-goLoad tools:
package main import ( "context" "encoding/json" "github.com/googleapis/mcp-toolbox-sdk-go/core" "google.golang.org/genai" ) func main() { // Make sure to add the error checks // Update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() client, err := core.NewToolboxClient(URL) // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) // Fetch the tool's input schema inputschema, err := tool.InputSchema() var schema *genai.Schema _ = json.Unmarshal(inputschema, &schema) funcDeclaration := &genai.FunctionDeclaration{ Name: tool.Name(), Description: tool.Description(), Parameters: schema, } // Use this tool with Go GenAI genAITool := &genai.Tool{ FunctionDeclarations: []*genai.FunctionDeclaration{funcDeclaration}, } }
Install Toolbox Go SDK:
go get github.com/googleapis/mcp-toolbox-sdk-goLoad tools:
package main import ( "context" "encoding/json" "github.com/googleapis/mcp-toolbox-sdk-go/core" openai "github.com/openai/openai-go" ) func main() { // Make sure to add the error checks // Update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() client, err := core.NewToolboxClient(URL) // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) // Fetch the tool's input schema inputschema, err := tool.InputSchema() var paramsSchema openai.FunctionParameters _ = json.Unmarshal(inputschema, ¶msSchema) // Use this tool with OpenAI Go openAITool := openai.ChatCompletionToolParam{ Function: openai.FunctionDefinitionParam{ Name: tool.Name(), Description: openai.String(tool.Description()), Parameters: paramsSchema, }, } }
The primary way to configure Toolbox is through the tools.yaml
file. If you have multiple files, you can tell toolbox which to load with the --tools-file tools.yaml
flag.
You can find more detailed reference documentation to all resource types in the Resources.
The sources
section of your tools.yaml
defines what data sources your Toolbox should have access to. Most tools will have at least one source to execute against.
sources: my-pg-source: kind: postgres host: 127.0.0.1 port: 5432 database: toolbox_db user: toolbox_user password: my-password
For more details on configuring different types of sources, see the Sources.
The tools
section of a tools.yaml
define the actions an agent can take: what kind of tool it is, which source(s) it affects, what parameters it uses, etc.
tools: search-hotels-by-name: kind: postgres-sql source: my-pg-source description: Search for hotels based on name. parameters: - name: name type: string description: The name of the hotel. statement: SELECT * FROM hotels WHERE name ILIKE '%' || $1 || '%';
For more details on configuring different types of tools, see the Tools.
The toolsets
section of your tools.yaml
allows you to define groups of tools that you want to be able to load together. This can be useful for defining different groups based on agent or application.
toolsets: my_first_toolset: - my_first_tool - my_second_tool my_second_toolset: - my_second_tool - my_third_tool
You can load toolsets by name:
# This will load all tools all_tools = client.load_toolset() # This will only load the tools listed in 'my_second_toolset' my_second_toolset = client.load_toolset("my_second_toolset")
This project uses semantic versioning, including a MAJOR.MINOR.PATCH
version number that increments with:
The public API that this applies to is the CLI associated with Toolbox, the interactions with official SDKs, and the definitions in the tools.yaml
file.
Contributions are welcome. Please, see the CONTRIBUTING to get started.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See Contributor Code of Conduct for more information.
Join our discord community to connect with our developers!
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4