A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/googleapis/genai-toolbox below:

googleapis/genai-toolbox: MCP Toolbox for Databases is an open source MCP server for databases.

MCP Toolbox for Databases

Note

MCP Toolbox for Databases is currently in beta, and may see breaking changes until the first stable release (v1.0).

MCP Toolbox for Databases is an open source MCP server for databases. It enables you to develop tools easier, faster, and more securely by handling the complexities such as connection pooling, authentication, and more.

This README provides a brief overview. For comprehensive details, see the full documentation.

Note

This solution was originally named “Gen AI Toolbox for Databases” as its initial development predated MCP, but was renamed to align with recently added MCP compatibility.

Toolbox helps you build Gen AI tools that let your agents access data in your database. Toolbox provides:

⚡ Supercharge Your Workflow with an AI Database Assistant ⚡

Stop context-switching and let your AI assistant become a true co-developer. By connecting your IDE to your databases with MCP Toolbox, you can delegate complex and time-consuming database tasks, allowing you to build faster and focus on what matters. This isn't just about code completion; it's about giving your AI the context it needs to handle the entire development lifecycle.

Here’s how it will save you time:

Learn how to connect your AI tools (IDEs) to Toolbox using MCP.

Toolbox sits between your application's orchestration framework and your database, providing a control plane that is used to modify, distribute, or invoke tools. It simplifies the management of your tools by providing you with a centralized location to store and update tools, allowing you to share tools between agents and applications and update those tools without necessarily redeploying your application.

For the latest version, check the releases page and use the following instructions for your OS and CPU architecture.

Binary

To install Toolbox as a binary:

# see releases page for other versions
export VERSION=0.12.0
curl -O https://storage.googleapis.com/genai-toolbox/v$VERSION/linux/amd64/toolbox
chmod +x toolbox
Container image You can also install Toolbox as a container:
# see releases page for other versions
export VERSION=0.12.0
docker pull us-central1-docker.pkg.dev/database-toolbox/toolbox/toolbox:$VERSION
Homebrew

To install Toolbox using Homebrew on macOS or Linux:

Compile from source

To install from source, ensure you have the latest version of Go installed, and then run the following command:

go install github.com/googleapis/genai-toolbox@v0.12.0

Configure a tools.yaml to define your tools, and then execute toolbox to start the server:

./toolbox --tools-file "tools.yaml"

Note

Toolbox enables dynamic reloading by default. To disable, use the --disable-reload flag.

If you installed Toolbox using Homebrew, the toolbox binary is available in your system path. You can start the server with the same command:

toolbox --tools-file "tools.yaml"

You can use toolbox help for a full list of flags! To stop the server, send a terminate signal (ctrl+c on most platforms).

For more detailed documentation on deploying to different environments, check out the resources in the How-to section

Integrating your application

Once your server is up and running, you can load the tools into your application. See below the list of Client SDKs for using various frameworks:

Python (Github)
Core
  1. Install Toolbox Core SDK:

  2. Load tools:

    from toolbox_core import ToolboxClient
    
    # update the url to point to your server
    async with ToolboxClient("http://127.0.0.1:5000") as client:
    
        # these tools can be passed to your application!
        tools = await client.load_toolset("toolset_name")

For more detailed instructions on using the Toolbox Core SDK, see the project's README.

LangChain / LangGraph
  1. Install Toolbox LangChain SDK:

    pip install toolbox-langchain
  2. Load tools:

    from toolbox_langchain import ToolboxClient
    
    # update the url to point to your server
    async with ToolboxClient("http://127.0.0.1:5000") as client:
    
        # these tools can be passed to your application!
        tools = client.load_toolset()

    For more detailed instructions on using the Toolbox LangChain SDK, see the project's README.

LlamaIndex
  1. Install Toolbox Llamaindex SDK:

    pip install toolbox-llamaindex
  2. Load tools:

    from toolbox_llamaindex import ToolboxClient
    
    # update the url to point to your server
    async with ToolboxClient("http://127.0.0.1:5000") as client:
    
        # these tools can be passed to your application!
        tools = client.load_toolset()

    For more detailed instructions on using the Toolbox Llamaindex SDK, see the project's README.

Javascript/Typescript (Github)
Core
  1. Install Toolbox Core SDK:

    npm install @toolbox-sdk/core
  2. Load tools:

    import { ToolboxClient } from '@toolbox-sdk/core';
    
    // update the url to point to your server
    const URL = 'http://127.0.0.1:5000';
    let client = new ToolboxClient(URL);
    
    // these tools can be passed to your application!
    const tools = await client.loadToolset('toolsetName');

    For more detailed instructions on using the Toolbox Core SDK, see the project's README.

LangChain / LangGraph
  1. Install Toolbox Core SDK:

    npm install @toolbox-sdk/core
  2. Load tools:

    import { ToolboxClient } from '@toolbox-sdk/core';
    
    // update the url to point to your server
    const URL = 'http://127.0.0.1:5000';
    let client = new ToolboxClient(URL);
    
    // these tools can be passed to your application!
    const toolboxTools = await client.loadToolset('toolsetName');
    
    // Define the basics of the tool: name, description, schema and core logic
    const getTool = (toolboxTool) => tool(currTool, {
        name: toolboxTool.getName(),
        description: toolboxTool.getDescription(),
        schema: toolboxTool.getParamSchema()
    });
    
    // Use these tools in your Langchain/Langraph applications
    const tools = toolboxTools.map(getTool);
Genkit
  1. Install Toolbox Core SDK:

    npm install @toolbox-sdk/core
  2. Load tools:

    import { ToolboxClient } from '@toolbox-sdk/core';
    import { genkit } from 'genkit';
    
    // Initialise genkit
    const ai = genkit({
        plugins: [
            googleAI({
                apiKey: process.env.GEMINI_API_KEY || process.env.GOOGLE_API_KEY
            })
        ],
        model: googleAI.model('gemini-2.0-flash'),
    });
    
    // update the url to point to your server
    const URL = 'http://127.0.0.1:5000';
    let client = new ToolboxClient(URL);
    
    // these tools can be passed to your application!
    const toolboxTools = await client.loadToolset('toolsetName');
    
    // Define the basics of the tool: name, description, schema and core logic
    const getTool = (toolboxTool) => ai.defineTool({
        name: toolboxTool.getName(),
        description: toolboxTool.getDescription(),
        schema: toolboxTool.getParamSchema()
    }, toolboxTool)
    
    // Use these tools in your Genkit applications
    const tools = toolboxTools.map(getTool);
Go (Github)
Core
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
  2. Load tools:

    package main
    
    import (
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "context"
    )
    
    func main() {
      // Make sure to add the error checks
      // update the url to point to your server
      URL := "http://127.0.0.1:5000";
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tools
      tools, err := client.LoadToolset("toolsetName", ctx)
    }

    For more detailed instructions on using the Toolbox Go SDK, see the project's README.

LangChain Go
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
  2. Load tools:

    package main
    
    import (
      "context"
      "encoding/json"
    
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "github.com/tmc/langchaingo/llms"
    )
    
    func main() {
      // Make sure to add the error checks
      // update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Fetch the tool's input schema
      inputschema, err := tool.InputSchema()
    
      var paramsSchema map[string]any
      _ = json.Unmarshal(inputschema, &paramsSchema)
    
      // Use this tool with LangChainGo
      langChainTool := llms.Tool{
        Type: "function",
        Function: &llms.FunctionDefinition{
          Name:        tool.Name(),
          Description: tool.Description(),
          Parameters:  paramsSchema,
        },
      }
    }
Genkit
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
  2. Load tools:

    package main
    import (
      "context"
      "encoding/json"
    
      "github.com/firebase/genkit/go/ai"
      "github.com/firebase/genkit/go/genkit"
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "github.com/googleapis/mcp-toolbox-sdk-go/tbgenkit"
      "github.com/invopop/jsonschema"
    )
    
    func main() {
      // Make sure to add the error checks
      // Update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
      g, err := genkit.Init(ctx)
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Convert the tool using the tbgenkit package
      // Use this tool with Genkit Go
      genkitTool, err := tbgenkit.ToGenkitTool(tool, g)
      if err != nil {
        log.Fatalf("Failed to convert tool: %v\n", err)
      }
    }
Go GenAI
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
  2. Load tools:

    package main
    
    import (
      "context"
      "encoding/json"
    
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      "google.golang.org/genai"
    )
    
    func main() {
      // Make sure to add the error checks
      // Update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Fetch the tool's input schema
      inputschema, err := tool.InputSchema()
    
      var schema *genai.Schema
      _ = json.Unmarshal(inputschema, &schema)
    
      funcDeclaration := &genai.FunctionDeclaration{
        Name:        tool.Name(),
        Description: tool.Description(),
        Parameters:  schema,
      }
    
      // Use this tool with Go GenAI
      genAITool := &genai.Tool{
        FunctionDeclarations: []*genai.FunctionDeclaration{funcDeclaration},
      }
    }
OpenAI Go
  1. Install Toolbox Go SDK:

    go get github.com/googleapis/mcp-toolbox-sdk-go
  2. Load tools:

    package main
    
    import (
      "context"
      "encoding/json"
    
      "github.com/googleapis/mcp-toolbox-sdk-go/core"
      openai "github.com/openai/openai-go"
    )
    
    func main() {
      // Make sure to add the error checks
      // Update the url to point to your server
      URL := "http://127.0.0.1:5000"
      ctx := context.Background()
    
      client, err := core.NewToolboxClient(URL)
    
      // Framework agnostic tool
      tool, err := client.LoadTool("toolName", ctx)
    
      // Fetch the tool's input schema
      inputschema, err := tool.InputSchema()
    
      var paramsSchema openai.FunctionParameters
      _ = json.Unmarshal(inputschema, &paramsSchema)
    
      // Use this tool with OpenAI Go
      openAITool := openai.ChatCompletionToolParam{
        Function: openai.FunctionDefinitionParam{
          Name:        tool.Name(),
          Description: openai.String(tool.Description()),
          Parameters:  paramsSchema,
        },
      }
    
    }

The primary way to configure Toolbox is through the tools.yaml file. If you have multiple files, you can tell toolbox which to load with the --tools-file tools.yaml flag.

You can find more detailed reference documentation to all resource types in the Resources.

The sources section of your tools.yaml defines what data sources your Toolbox should have access to. Most tools will have at least one source to execute against.

sources:
  my-pg-source:
    kind: postgres
    host: 127.0.0.1
    port: 5432
    database: toolbox_db
    user: toolbox_user
    password: my-password

For more details on configuring different types of sources, see the Sources.

The tools section of a tools.yaml define the actions an agent can take: what kind of tool it is, which source(s) it affects, what parameters it uses, etc.

tools:
  search-hotels-by-name:
    kind: postgres-sql
    source: my-pg-source
    description: Search for hotels based on name.
    parameters:
      - name: name
        type: string
        description: The name of the hotel.
    statement: SELECT * FROM hotels WHERE name ILIKE '%' || $1 || '%';

For more details on configuring different types of tools, see the Tools.

The toolsets section of your tools.yaml allows you to define groups of tools that you want to be able to load together. This can be useful for defining different groups based on agent or application.

toolsets:
    my_first_toolset:
        - my_first_tool
        - my_second_tool
    my_second_toolset:
        - my_second_tool
        - my_third_tool

You can load toolsets by name:

# This will load all tools
all_tools = client.load_toolset()

# This will only load the tools listed in 'my_second_toolset'
my_second_toolset = client.load_toolset("my_second_toolset")

This project uses semantic versioning, including a MAJOR.MINOR.PATCH version number that increments with:

The public API that this applies to is the CLI associated with Toolbox, the interactions with official SDKs, and the definitions in the tools.yaml file.

Contributions are welcome. Please, see the CONTRIBUTING to get started.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms. See Contributor Code of Conduct for more information.

Join our discord community to connect with our developers!


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4