The boilerplate
package offers tools for managing and generating standardised text for methods and results sections of scientific reports. The package handles template variable substitution and supports hierarchical organisation of text through dot-separated paths.
You can install the development version of boilerplate from GitHub with:
# install the devtools package if you don't have it already install.packages("devtools") devtools::install_github("go-bayes/boilerplate")
statistical.longitudinal.lmtp
){{variable}}
placeholders with actual valuesboilerplate
includes several safety features to prevent accidental data loss:
boilerplate_save()
function requires explicit specification of categories when saving individual databasesboilerplate_unified.rds
for unified databases, {category}_db.rds
for individual categories)confirm=TRUE
) before overwriting existing filestimestamp=TRUE
) to prevent overwritescreate_backup=TRUE
in interactive sessions)create_dirs=TRUE
)# install from github if not already installed if (!require(boilerplate, quietly = TRUE)) { # install devtools if necessary if (!require(devtools, quietly = TRUE)) { install.packages("devtools") } devtools::install_github("go-bayes/boilerplate") } # create a directory for this example (in practice, use your project directory) example_dir <- file.path(tempdir(), "boilerplate_example") dir.create(example_dir, showWarnings = FALSE) # initialise unified database with example content boilerplate_init( data_path = example_dir, create_dirs = TRUE, create_empty = FALSE, # FALSE loads default example content confirm = FALSE, quiet = TRUE ) # import the unified database unified_db <- boilerplate_import(data_path = example_dir, quiet = TRUE) # add a new method entry directly to the unified database unified_db$methods$sample_selection <- "Participants were selected from {{population}} during {{timeframe}}." # save all changes at once (JSON by default) boilerplate_save(unified_db, data_path = example_dir, confirm = FALSE, quiet = TRUE) # generate text with variable substitution methods_text <- boilerplate_generate_text( category = "methods", sections = c("sample.default", "sample_selection"), global_vars = list( population = "university students", timeframe = "2020-2021" ), db = unified_db, add_headings = TRUE ) cat(methods_text)
The boilerplate package can manage bibliography files for your projects, ensuring consistent citations across all your boilerplate text:
# make sure you have the unified_db loaded from previous example # if not, load it: # unified_db <- boilerplate_import(data_path = example_dir, quiet = TRUE) # add bibliography information to your database # using the example bibliography included with the package example_bib <- system.file("extdata", "example_references.bib", package = "boilerplate") unified_db <- boilerplate_add_bibliography( unified_db, url = paste0("file://", example_bib), local_path = "references.bib" ) # save the updated database boilerplate_save(unified_db, data_path = example_dir, confirm = FALSE, quiet = TRUE) # generate text and automatically copy bibliography methods_text <- boilerplate_generate_text( category = "methods", sections = "statistical.default", # Use full path to the default text db = unified_db, copy_bibliography = TRUE, bibliography_path = "manuscript/" ) # Validate all citations exist in bibliography validation <- boilerplate_validate_references(unified_db) if (!validation$valid) { warning("Missing references: ", paste(validation$missing, collapse = ", ")) }
The boilerplate package supports JSON format for all database operations. JSON provides several advantages over the traditional RDS format:
For detailed JSON workflows, see vignette("boilerplate-json-workflow")
.
# first ensure you have a database to import # init if needed: # boilerplate_init(data_path = "path/to", create_dirs = TRUE) # first ensure you have a database to import # Initialise if needed: boilerplate_init(data_path = "my_project/data", create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # import database (automatically detects JSON or RDS format) unified_db <- boilerplate_import(data_path = "my_project/data", quiet = TRUE) # save as JSON (this is the default format) boilerplate_save(unified_db, data_path = "my_project/data", format = "json", confirm = FALSE, quiet = TRUE) # if you have old RDS files from a previous version, you can migrate them: # results <- boilerplate_migrate_to_json( # source_path = "old_project/data", # Path containing .rds files # output_path = "new_project/data", # Where to save JSON files # format = "unified", # Create single unified file # backup = TRUE # Backup RDS files first # )
# e.g: Using a specific project directory for JSON data my_json_path <- file.path("my_analysis", "boilerplate_data") # initialise if needed # boilerplate_init(data_path = my_json_path, create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # import database (auto-detects JSON format) # db <- boilerplate_import(data_path = my_json_path, quiet = TRUE) # make changes # db$methods$new_method <- "This is a new method using {{technique}}." # save back as JSON (default format) # boilerplate_save(db, data_path = my_json_path, confirm = FALSE, quiet = TRUE)Validating JSON Structure
# e.g: validate JSON database structure # Note: This requires the JSON schema files to be installed # validation_errors <- validate_json_database( # file.path("my_project/data", "boilerplate_unified.json"), # type = "unified" # ) # # if (length(validation_errors) == 0) { # message("JSON structure is valid!") # } else { # message("Validation errors found:") # print(validation_errors) # }Working with Custom Data Paths
By default, boilerplate
stores database files using tools::R_user_dir("boilerplate", "data")
for CRAN compliance. However, there are many situations where you might need to use a different location:
# uncomment and set up to your preferences # # load here to manage paths # dep <- requireNamespace("here", quietly = TRUE) # if (!dep) install.packages("here") # library(here) # # create required folder (add others if needed) # dirs <- c( # here::here("my_project_directory"), # ) # for (d in dirs) { # if (!dir.exists(d)) dir.create(d, recursive = TRUE) # } # # then use this is as your project directory # my_project_directory = here:here("my_project_directory")
here
of fs
packages to quicky set directory paths to your liking.All key functions in the package (boilerplate_init()
, boilerplate_import()
, boilerplate_save()
, and boilerplate_export()
) accept a data_path
parameter to specify a custom location. When working with custom paths, be sure to use the same path consistently across all functions.
# define your custom path my_project_path <- file.path("my_research_project", "data") # init databases in your custom location boilerplate_init( categories = c("measures", "methods", "results", "discussion", "appendix", "template"), data_path = my_project_path, # Specify custom path here create_dirs = TRUE, confirm = FALSE, quiet = TRUE ) # import all databases from your custom location unified_db <- boilerplate_import( data_path = my_project_path # Specify the same custom path ) # make some changes unified_db$measures$new_measure <- list( name = "new measure scale", description = "a newly added measure", reference = "author2023", waves = "1-2", keywords = c("new", "test"), items = list("test item 1", "test item 2") ) # save changes back to your custom location boilerplate_save( db = unified_db, data_path = my_project_path, # Specify the same custom path confirm = TRUE ) # to save just a specific category: boilerplate_save( db = unified_db$measures, category = "measures", data_path = my_project_path, confirm = TRUE )Project Management (New in v1.2.0)
The boilerplate package now supports projects - isolated namespaces that keep different boilerplate collections separate. This is ideal for:
All core functions now accept a project
parameter:
# create new project for shared lab content boilerplate_init( project = "lab_shared", categories = c("methods", "measures"), create_dirs = TRUE, confirm = FALSE ) # import from specific project lab_db <- boilerplate_import(project = "lab_shared") # add content to your labs project lab_db$methods$ethics <- "This study was approved by {{institution}} ethics committee (ref: {{ethics_ref}})." # save to this project boilerplate_save(lab_db, project = "lab_shared")Working with Multiple Projects
# list all available projects projects <- boilerplate_list_projects() print(projects) # create personal and shared projects boilerplate_init(project = "my_analysis", create_dirs = TRUE, confirm = FALSE, quiet = TRUE) boilerplate_init(project = "team_templates", create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # each project maintains its own isolated namespace my_db <- boilerplate_import(project = "my_analysis", quiet = TRUE) team_db <- boilerplate_import(project = "team_templates", quiet = TRUE)
Copy content between projects with conflict handling:
# copy specific content from team templates to your project boilerplate_copy_from_project( from_project = "team_templates", to_project = "my_analysis", paths = c("methods.statistical", "measures.demographics"), merge_strategy = "skip", # skip, overwrite, or rename confirm = FALSE ) # e.g: copy with a prefix to avoid naming conflicts # first create the colleague's project # boilerplate_init(project = "colleague_jane", create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # Then copy their content: # boilerplate_copy_from_project( # from_project = "colleague_jane", # to_project = "my_analysis", # paths = "measures.anxiety", # prefix = "jane_", # results in "jane_anxiety" # confirm = FALSE # )Relative vs. Absolute Paths
Both relative and absolute paths are supported:
# e.g.: relative path (relative to working directory) # boilerplate_import(data_path = "my_project/data", quiet = TRUE) # e.g.: absolute path # boilerplate_import(data_path = "/Users/researcher/projects/study_2023/data", quiet = TRUE)
For portable code, consider using relative paths or the file.path()
function to construct paths.
A common workflow in research labs involves maintaining a central boilerplate database on GitHub that team members copy for project-specific use:
# 1. clone central database from GitHub, e.g. # git clone https://github.com/yourlab/boilerplate-database.git # 2. copy the database files to your project # cp -r boilerplate-database/.boilerplate-data my-project/.boilerplate-data # 3. import and use in your project (auto-detects format) # db <- boilerplate_import(data_path = ".boilerplate-data") # 4. make project-specific changes # db$methods$sample_size <- "We recruited {{n}} participants for {{study_name}}." # 5. save locally for your project # boilerplate_save(db, data_path = ".boilerplate-data") # for JSON format (now the default): # boilerplate_save(db, data_path = ".boilerplate-data", format = "json") # 6. if you make changes that should be shared: # - copy back to the central repository # - submit a pull request with your improvementsManaging Database Versions
The boilerplate package now supports version management for your databases. When you save databases with timestamps or when backups are created, you can easily manage and restore these versions.
Listing Available VersionsUse boilerplate_list_files()
to see all available database files:
# list all database files in your data directory # first, ensure you have initialised a database: # boilerplate_init(data_path = "my_project/data", create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # next list files: # files <- boilerplate_list_files(data_path = "my_project/data") # print(files) # list only methods database files # files <- boilerplate_list_files(data_path = "my_project/data", category = "methods") # list files from a specific period # files <- boilerplate_list_files(data_path = "my_project/data", pattern = "202401") # January 2024 files
The function organises files into: - Standard files: Current working versions (e.g., methods_db.rds
) - Timestamped versions: Saved with timestamps (e.g., methods_db_20240115_143022.rds
) - Backup files: Automatic backups (e.g., methods_db_backup_20240115_140000.rds
)
The enhanced boilerplate_import()
function can now import any database file directly:
# import database examples # Note: These examples show the pattern - replace paths with your actual files # import the current standard version # db <- boilerplate_import("methods") # import a specific timestamped version # db <- boilerplate_import(data_path = "path/to/methods_db_20240115_143022.rds") # import a backup file # db <- boilerplate_import(data_path = "path/to/methods_db_backup_20240115_140000.rds")
Use boilerplate_restore_backup()
for convenient backup restoration:
# backup restoration examples # note: these require existing backup files in your data directory # view the latest backup without restoring # backup_db <- boilerplate_restore_backup("methods") # restore the latest backup as the current version # db <- boilerplate_restore_backup( # category = "methods", # restore = TRUE, # confirm = TRUE # Will ask for confirmation # ) # restore a specific backup by timestamp # db <- boilerplate_restore_backup( # category = "methods", # backup_version = "20240110_120000", # restore = TRUE # )Version Management Workflow
Here’s a typical workflow for managing versions:
# 1. check what versions are available # files <- boilerplate_list_files(data_path = "my_project/data", category = "methods") # 2. save current work with timestamp # boilerplate_save( # db = unified_db, # data_path = "my_project/data", # timestamp = TRUE, # Creates timestamped backup # confirm = FALSE, # quiet = TRUE # ) # 3. if you need to revert changes, restore from backup # boilerplate_restore_backup( # data_path = "my_project/data", # category = "methods", # restore = TRUE, # confirm = FALSE # ) # 4. work with specific versions # list available backups first: # backups <- boilerplate_list_files(data_path = "my_project/data", pattern = "backup") # Then load a specific version if needed
Rather than creating separate .qmd
files, you can embed boilerplate directly in your analysis code chunks:
# at the beginning of your analysis script or Quarto document library(boilerplate) # define global variables study_params <- list( n_participants = 250, study_name = "Study 1", recruitment_method = "online panels", analysis_software = "R version 4.3.0" ) # Example 1: using default location (recommended for persistent storage) # the default location uses tools::R_user_dir() and includes project structure # db <- boilerplate_import() # Uses default project # Example 2: using a temporary directory (for this example) temp_analysis <- file.path(tempdir(), "analysis_example") boilerplate_init( data_path = temp_analysis, create_dirs = TRUE, create_empty = FALSE, # Load default content confirm = FALSE, quiet = TRUE ) # import database db <- boilerplate_import(data_path = temp_analysis, quiet = TRUE) # generate methods text when needed methods_sample <- boilerplate_generate_text( category = "methods", sections = "sample.default", # Use full path to the default text global_vars = study_params, db = db ) # use the text directly in your document cat("## Methods\n\n", methods_sample) # clean up unlink(temp_analysis, recursive = TRUE) # example 3: For a real project with existing .boilerplate-data directory: # If you have an existing directory structure, you may need to specify: # db <- boilerplate_import(data_path = ".boilerplate-data/projects/default/data") # or initialise it first: # boilerplate_init(data_path = ".boilerplate-data", create_dirs = TRUE)Working with Individual Databases
You can still work with individual databases if preferred:
# working with individual databases example # use the here::here() from the `here` package as an alternative # # load here to manage paths # dep <- requireNamespace("here", quietly = TRUE) # if (!dep) install.packages("here") # library(here) # create required folder (add others if needed) # dirs <- c( # here::here("temp_dir"), # ) # for (d in dirs) { # if (!dir.exists(d)) dir.create(d, recursive = TRUE) # } # temp_dir = here:here("temp_dir") # for this example temp_dir <- file.path(tempdir(), "individual_db_example") boilerplate_init(data_path = temp_dir, create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # import just the methods database methods_db <- boilerplate_import("methods", data_path = temp_dir, quiet = TRUE) # add a new method entry methods_db$sample_selection <- "Participants were selected from {{population}} during {{timeframe}}." # save just the methods database boilerplate_save(methods_db, "methods", data_path = temp_dir, confirm = FALSE, quiet = TRUE) # generate text with variable substitution methods_text <- boilerplate_generate_text( category = "methods", sections = c("sample.default", "sample_selection"), global_vars = list( population = "university students", timeframe = "2020-2021" ), db = methods_db, add_headings = TRUE ) cat(methods_text) # clean up unlink(temp_dir, recursive = TRUE)
The package supports initialising empty database structures by default, providing a clean slate for your project without sample content.
# create empty databases example temp_empty <- file.path(tempdir(), "empty_db_example") # init empty databases (default behavior) boilerplate_init( categories = c("methods", "results"), data_path = temp_empty, create_dirs = TRUE, confirm = FALSE, quiet = TRUE ) # check that databases are empty db_empty <- boilerplate_import(data_path = temp_empty, quiet = TRUE) print(length(db_empty$methods)) # Should be 0 # clean unlink(temp_empty, recursive = TRUE) # initialise with default content when needed temp_content <- file.path(tempdir(), "content_db_example") boilerplate_init( categories = c("methods", "results"), data_path = temp_content, create_dirs = TRUE, create_empty = FALSE, # This loads default content confirm = FALSE, quiet = TRUE ) # check that databases have content db_content <- boilerplate_import(data_path = temp_content, quiet = TRUE) print(length(db_content$methods)) # Should be > 0 # clean up unlink(temp_content, recursive = TRUE)
Empty databases provide just the top-level structure without example content, making it easier to start with a clean slate.
The package now supports exporting databases for versioning or sharing specific elements:
# export database example temp_export <- file.path(tempdir(), "export_example") boilerplate_init(data_path = temp_export, create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # import database unified_db <- boilerplate_import(data_path = temp_export, quiet = TRUE) # export entire database for versioning boilerplate_export( db = unified_db, output_file = "boilerplate_v1.0.json", data_path = temp_export, confirm = FALSE, quiet = TRUE ) # export selected elements (specific methods and results) boilerplate_export( db = unified_db, output_file = "causal_methods_subset.json", select_elements = c("methods.statistical.*", "results.main_effect"), data_path = temp_export, confirm = FALSE, quiet = TRUE ) # check exported files exist list.files(temp_export, pattern = "\\.(json|rds)$") # clean up unlink(temp_export, recursive = TRUE)
The export function supports: - Full database export (ideal for versioning) - Selective export using dot notation (e.g., “methods.statistical.longitudinal”) - Wildcard selections using “” (e.g., ”methods.” selects all methods) - Category-prefixed paths for unified databases
Export is distinct from save: use boilerplate_save()
for normal database updates and boilerplate_export()
for creating standalone exports.
The package provides a simplified way to manage measures and generate formatted text about them. Measures are stored as top-level entries in the measures database, with each measure containing standardised properties like name, description, reference, etc.
# measures example with temporary directory temp_measures <- file.path(tempdir(), "measures_example") boilerplate_init(data_path = temp_measures, create_empty = FALSE, create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # import the unified database unified_db <- boilerplate_import(data_path = temp_measures, quiet = TRUE) # add a measure directly to the unified database # note: measures should be at the top level of the measures database unified_db$measures$anxiety_gad7 <- list( name = "generalised anxiety disorder scale (GAD-7)", description = "anxiety was measured using the GAD-7 scale.", reference = "spitzer2006", waves = "1-3", keywords = c("anxiety", "mental health", "gad"), items = list( "feeling nervous, anxious, or on edge", "not being able to stop or control worrying", "worrying too much about different things", "trouble relaxing" ) ) # save the entire unified database boilerplate_save(unified_db, data_path = temp_measures, confirm = FALSE, quiet = TRUE) # alternatively, save just the measures portion boilerplate_save(unified_db$measures, "measures", data_path = temp_measures, confirm = FALSE, quiet = TRUE) # then generate text referencing the measure by its top-level name exposure_text <- boilerplate_generate_measures( variable_heading = "Exposure Variable", variables = "anxiety_gad7", # match the name you used above db = unified_db, # can pass the unified database heading_level = 3, subheading_level = 4, print_waves = TRUE ) cat(exposure_text) # you can also use the helper function to extract just the measures measures_db <- boilerplate_measures(unified_db) # generate text for outcome variables using just the measures database psych_text <- boilerplate_generate_measures( variable_heading = "Psychological Outcomes", variables = c("anxiety_gad7", "depression_phq9"), db = measures_db, # or use the extracted measures database heading_level = 3, subheading_level = 4, print_waves = TRUE ) cat(psych_text) # generate statistical methods text stats_text <- boilerplate_generate_text( category = "methods", sections = c("statistical.longitudinal.lmtp"), global_vars = list(software = "R version 4.2.0"), add_headings = TRUE, custom_headings = list("statistical.longitudinal.lmtp" = "LMTP"), heading_level = "###", db = unified_db # pass the unified database ) # initialise a sample text (assuming this was defined earlier) sample_text <- boilerplate_generate_text( category = "methods", sections = "sample.default", global_vars = list(population = "university students", timeframe = "2023-2024"), db = unified_db ) # combine all sections into a complete methods section methods_section <- paste( "## Methods\n\n", sample_text, "\n\n", "### Variables\n\n", exposure_text, "\n", "### Outcome Variables\n\n", psych_text, "\n\n", stats_text, sep = "" ) cat(methods_section) # Save the methods section to a file that can be included in a quarto document # writeLines(methods_section, "methods_section.qmd") # Clean up unlink(temp_measures, recursive = TRUE)Important Notes on Measure Structure
When adding measures to the database:
boilerplate_generate_measures()
, use the top-level nameIncorrect structure (avoid this):
# don't organise measures under categories at the top level unified_db$measures$psychological$anxiety <- list(...) # WRONG
Correct structure:
# add measures directly at the top level unified_db$measures$anxiety_gad7 <- list(...) # CORRECT unified_db$measures$depression_phq9 <- list(...) # CORRECTStandardising and Reporting on Measures
The package includes powerful tools for standardising measure entries and reporting on database quality. This is particularly useful when working with legacy databases or when multiple contributors have added measures with inconsistent formatting.
The boilerplate_standardise_measures()
function automatically cleans and standardises your measures:
# standardisation example temp_standard <- file.path(tempdir(), "standardise_example") boilerplate_init(data_path = temp_standard, create_empty = FALSE, create_dirs = TRUE, confirm = FALSE, quiet = TRUE) # import your database unified_db <- boilerplate_import(data_path = temp_standard, quiet = TRUE) # check quality before standardisation boilerplate_measures_report(unified_db$measures) # standardise all measures unified_db$measures <- boilerplate_standardise_measures( unified_db$measures, extract_scale = TRUE, # Extract scale info from descriptions identify_reversed = TRUE, # Identify reversed items clean_descriptions = TRUE, # Clean up description text verbose = TRUE # Show what's being done ) # save the standardised database boilerplate_save(unified_db, data_path = temp_standard, confirm = FALSE, quiet = TRUE) # clean up unlink(temp_standard, recursive = TRUE)What Standardisation Does
Extracts Scale Information: Identifies and extracts scale details from descriptions
# before: description = "Ordinal response: (1 = Strongly Disagree, 7 = Strongly Agree)" # after: description = NULL # Removed if only contains scale info scale_info = "1 = Strongly Disagree, 7 = Strongly Agree" scale_anchors = c("1 = Strongly Disagree", "7 = Strongly Agree")
Identifies Reversed Items: Detects items marked with (r), (reversed), etc.
# items with (r) markers are identified items = list( "I have frequent mood swings.", "I am relaxed most of the time. (r)", "I get upset easily." ) # Creates: reversed_items = c(2)
Cleans Descriptions: Removes extra whitespace, fixes punctuation
Standardises References: Ensures consistent reference formatting
Ensures Complete Structure: All measures have standard fields
Use boilerplate_measures_report()
to assess your measures database:
# get a quality overview boilerplate_measures_report(unified_db$measures) # output: # === Measures Database Quality Report === # Total measures: 180 # Complete descriptions: 165 (91.7%) # With references: 172 (95.6%) # With items: 180 (100.0%) # With wave info: 178 (98.9%) # Already standardised: 180 (100.0%) # get detailed report as data frame quality_report <- boilerplate_measures_report( unified_db$measures, return_report = TRUE ) # find measures missing information missing_refs <- quality_report[!quality_report$has_reference, ] missing_desc <- quality_report[!quality_report$has_description, ] # view specific measure details View(quality_report)Standardising Specific Measures
You can also standardise individual measures or a subset:
# standardise only specific measures unified_db$measures <- boilerplate_standardise_measures( unified_db$measures, measure_names = c("anxiety_gad7", "depression_phq9", "self_esteem") ) # or standardise a single measure unified_db$measures$anxiety_gad7 <- boilerplate_standardise_measures( unified_db$measures$anxiety_gad7 )Enhanced Output with Standardised Measures
After standardisation, the boilerplate_generate_measures()
function can better format your measures:
# generate formatted output with enhanced features measures_text <- boilerplate_generate_measures( variable_heading = "Psychological Measures", variables = c("self_control", "neuroticism"), db = unified_db, table_format = TRUE, # Use table format sample_items = 3, # Show only 3 items per measure check_completeness = TRUE, # Note any missing information quiet = TRUE # Suppress progress messages ) cat(measures_text)
Example output:
### Psychological Measures
#### Self Control
| Field | Information |
|-------|-------------|
| Description | Self-control was measured using two items [@tangney_high_2004]. |
| Response Scale | 1 = Strongly Disagree, 7 = Strongly Agree |
| Waves | 5-current |
**Items:**
1. In general, I have a lot of self-control
2. I wish I had more self-discipline (r)
*(r) denotes reverse-scored item*
#### Neuroticism
| Field | Information |
|-------|-------------|
| Description | Mini-IPIP6 Neuroticism dimension [@sibley2011]. |
| Response Scale | 1 = Strongly Disagree, 7 = Strongly Agree |
| Waves | 1-current |
**Items:**
1. I have frequent mood swings.
2. I am relaxed most of the time. (r)
3. I get upset easily.
*(1 additional items not shown)*
*(r) denotes reverse-scored item*
boilerplate_export()
to create a backup before standardisingThe package includes powerful functions for batch editing and cleaning your databases. These are particularly useful when you need to update multiple entries at once or clean up inconsistent formatting.
Use boilerplate_batch_edit()
to update specific fields across multiple entries:
# first, ensure you have a database to work with # example using a temporary directory: temp_batch <- file.path(tempdir(), "batch_example") boilerplate_init( data_path = temp_batch, create_dirs = TRUE, create_empty = FALSE, # FALSE loads example content with actual measures confirm = FALSE, quiet = TRUE ) # load your database unified_db <- boilerplate_import(data_path = temp_batch, quiet = TRUE) # example 1: update specific references unified_db <- boilerplate_batch_edit( db = unified_db, field = "reference", new_value = "sibley2021", target_entries = c("anxiety", "depression", "life_satisfaction"), category = "measures" ) # example 2: update all references containing "_reference" unified_db <- boilerplate_batch_edit( db = unified_db, field = "reference", new_value = "sibley2023", match_pattern = "_reference", category = "measures" ) # example 3: use wildcards to target groups of entries unified_db <- boilerplate_batch_edit( db = unified_db, field = "waves", new_value = "1-15", target_entries = "alcohol*", # All entries starting with "alcohol" category = "measures" ) # Example 4: update entries with specific values unified_db <- boilerplate_batch_edit( db = unified_db, field = "reference", new_value = "sibley2024", match_values = c("anxiety_reference", "depression_reference"), category = "measures" )
Always preview changes before applying them:
# preview what would change boilerplate_batch_edit( db = unified_db, field = "reference", new_value = "sibley2021", target_entries = c("ban_hate_speech", "born_nz"), category = "measures", preview = TRUE ) # output shows what would change: # Preview of changes: # ℹ ban_hate_speech: "dore2022boundaries" -> "sibley2021" # ℹ born_nz: "sibley2011" -> "sibley2021" # ✓ Would update 2 entriesBatch Editing Multiple Fields
Edit multiple fields in one operation:
# update both reference and waves for specific entries unified_db <- boilerplate_batch_edit_multi( db = unified_db, edits = list( list( field = "reference", new_value = "sibley2021", target_entries = c("ban_hate_speech", "born_nz") ), list( field = "waves", new_value = "1-15", target_entries = c("ban_hate_speech", "born_nz") ) ), category = "measures" )
Clean up formatting issues across your database:
# continue with the unified_db from previous examples # example 1: remove unwanted characters from references unified_db <- boilerplate_batch_clean( db = unified_db, field = "reference", remove_chars = c("@", "[", "]"), category = "measures" ) # example 2: clean all entries EXCEPT specific ones unified_db <- boilerplate_batch_clean( db = unified_db, field = "reference", remove_chars = c("_", "[", "]"), exclude_entries = c("anxiety", "depression"), category = "measures" ) # example 3: clean with pattern matching and exclusions unified_db <- boilerplate_batch_clean( db = unified_db, field = "description", remove_chars = c("(", ")"), target_entries = "life_*", # All entries starting with "life_" exclude_entries = "life_events", # Except this one (if it existed) category = "measures" ) # example 4: multiple cleaning operations unified_db <- boilerplate_batch_clean( db = unified_db, field = "description", remove_chars = c("(", ")"), replace_pairs = list(" " = " "), # Replace double spaces with single trim_whitespace = TRUE, collapse_spaces = TRUE, category = "measures" ) # save all changes made through batch operations boilerplate_save(unified_db, data_path = temp_batch, confirm = FALSE, quiet = TRUE) # clean up unlink(temp_batch, recursive = TRUE)Finding Entries That Need Cleaning
Before cleaning, identify which entries contain specific characters:
# using the same unified_db from previous examples # find all entries with problematic characters entries_to_clean <- boilerplate_find_chars( db = unified_db, field = "reference", chars = c("@", "[", "]"), category = "measures" ) # view the results print(entries_to_clean) # find entries but exclude some from results entries_to_clean <- boilerplate_find_chars( db = unified_db, field = "reference", chars = c("@", "[", "]"), exclude_entries = c("forgiveness", "special_*"), category = "measures" )Workflow Example: Cleaning References
Here’s a complete workflow for cleaning up reference formatting:
# 1. first, see what needs cleaning problem_refs <- boilerplate_find_chars( db = unified_db, field = "reference", chars = c("@", "[", "]", " "), category = "measures" ) cat("Found", length(problem_refs), "references that need cleaning\n") # 2. preview the cleaning operation boilerplate_batch_clean( db = unified_db, field = "reference", remove_chars = c("@", "[", "]"), replace_pairs = list(" " = "_"), # Replace spaces with underscores trim_whitespace = TRUE, category = "measures", preview = TRUE ) # 3. apply cleaning unified_db <- boilerplate_batch_clean( db = unified_db, field = "reference", remove_chars = c("@", "[", "]"), replace_pairs = list(" " = "_"), trim_whitespace = TRUE, category = "measures", confirm = TRUE # Will ask for confirmation ) # 4. save cleaned database boilerplate_save(unified_db)Best Practices for Batch Operations
always preview first: Use preview = TRUE
to see what will change
make backups: export your database before major changes
boilerplate_export(unified_db, output_file = "backup_before_cleaning.rds")
Standardising References
# convert various reference formats to consistent style unified_db <- boilerplate_batch_clean( db = unified_db, field = "reference", remove_chars = c("@", "[", "]", "(", ")"), replace_pairs = list( " " = "", # Remove spaces "," = "_", # Replace commas "&" = "and" # Replace ampersands ), category = "measures" )
Updating Wave Information
# update all measures from specific wave range unified_db <- boilerplate_batch_edit( db = unified_db, field = "waves", new_value = "1-16", match_values = c("1-15", "1-current"), category = "measures" )
Fixing Description Formatting
# clean description formatting issues unified_db <- boilerplate_batch_clean( db = unified_db, field = "description", replace_pairs = list( ".." = ".", # Fix double periods " ." = ".", # Fix space before period " " = " " # Fix double spaces ), trim_whitespace = TRUE, category = "measures" )
These batch operations make it easy to maintain consistency across your entire database, especially when dealing with legacy data or contributions from multiple sources.
Appendix Content with the Unified DatabaseThe package supports appendix content that can be managed within the unified database:
# import the unified database unified_db <- boilerplate_import() # add detailed measures documentation to appendix unified_db$appendix$detailed_measures <- "# Detailed Measures Documentation\n\n## Overview\n\nThis appendix provides comprehensive documentation for all measures used in this study, including full item text, response options, and psychometric properties.\n\n## {{exposure_var}} Measure\n\n{{exposure_details}}\n\n## Outcome Measures\n\n{{outcome_details}}" # save the changes to the unified database boilerplate_save(unified_db) # generate appendix text with variable substitution appendix_text <- boilerplate_generate_text( category = "appendix", sections = c("detailed_measures"), global_vars = list( exposure_var = "Perfectionism", exposure_details = "The perfectionism measure consists of 3 items...", outcome_details = "Anxiety was measured using the GAD-7 scale..." ), db = unified_db # pass the unified database ) cat(appendix_text)Advanced Usage: Audience-Specific Reports with the Unified Database
You can create tailored reports for different audiences from the same underlying data:
# import the unified database unified_db <- boilerplate_import() # add audience-specific LMTP descriptions unified_db$methods$statistical_estimator$lmtp$technical_audience <- "We estimate causal effects using the Longitudinal Modified Treatment Policy (LMTP) estimator within a Targeted Minimum Loss-based Estimation (TMLE) framework. This semi-parametric estimator leverages the efficient influence function (EIF) to achieve double robustness and asymptotic efficiency." unified_db$methods$statistical_estimator$lmtp$applied_audience <- "We estimate causal effects using the LMTP estimator. This approach combines machine learning with causal inference methods to estimate treatment effects while avoiding strict parametric assumptions." unified_db$methods$statistical_estimator$lmtp$general_audience <- "We used advanced statistical methods that account for multiple factors that might influence both {{exposure_var}} and {{outcome_var}}. This method helps us distinguish between mere association and actual causal effects." # save the updated unified database boilerplate_save(unified_db) # function to generate methods text for different audiences generate_methods_by_audience <- function(audience = c("technical", "applied", "general"), db) { audience <- match.arg(audience) # select appropriate paths based on audience lmtp_path <- paste0("statistical_estimator.lmtp.", audience, "_audience") # generate text boilerplate_generate_text( category = "methods", sections = c("sample.default", lmtp_path), global_vars = list( exposure_var = "political_conservative", outcome_var = "social_wellbeing" ), db = db ) } # generate reports for different audiences technical_report <- generate_methods_by_audience("technical", unified_db) applied_report <- generate_methods_by_audience("applied", unified_db) general_report <- generate_methods_by_audience("general", unified_db) cat("General audience report:\n\n", general_report)Helper Functions for the Unified Database
The unified database approach includes several helper functions to extract specific categories:
# import the unified database unified_db <- boilerplate_import() # extract specific categories using helper functions methods_db <- boilerplate_methods(unified_db) measures_db <- boilerplate_measures(unified_db) results_db <- boilerplate_results(unified_db) discussion_db <- boilerplate_discussion(unified_db) appendix_db <- boilerplate_appendix(unified_db) template_db <- boilerplate_template(unified_db) # extract specific items using dot notation lmtp_method <- boilerplate_methods(unified_db, "statistical.longitudinal.lmtp") anxiety_measure <- boilerplate_measures(unified_db, "anxiety_gad7") main_result <- boilerplate_results(unified_db, "main_effect") # you can also directly access via the list structure causal_assumptions <- unified_db$methods$causal_assumptions$identificationDocument Templates with the Unified Database
The package supports document templates that can be used to create complete documents with placeholders for dynamic content:
# import unified database unified_db <- boilerplate_import() # add a custom conference abstract template unified_db$template$conference_abstract <- "# {{title}}\n\n**Authors**: {{authors}}\n\n## Background\n{{background}}\n\n## Methods\n{{methods}}\n\n## Results\n{{results}}" # save the updated unified database boilerplate_save(unified_db) # generate a document from template with variables abstract_text <- boilerplate_generate_text( category = "template", sections = "conference_abstract", global_vars = list( title = "Effect of Political Orientation on Well-being", authors = "Smith, J., Jones, A.", background = "Previous research has shown mixed findings...", methods = "We used data from a longitudinal study (N=47,000)...", results = "We found significant positive effects..." ), db = unified_db ) cat(abstract_text)Complete Workflow Example with the Unified Database
This example demonstrates combining multiple components to create a complete methods section using the unified database approach:
# init all databases and import them boilerplate_init(create_dirs = TRUE, confirm = TRUE) unified_db <- boilerplate_import() # add perfectionism measure to the unified database unified_db$measures$perfectionism <- list( name = "perfectionism", description = "Perfectionism was measured using a 3-item scale assessing maladaptive perfectionism tendencies.", reference = "rice_short_2014", waves = "10-current", keywords = c("personality", "mental health"), items = list( "Doing my best never seems to be enough.", "My performance rarely measures up to my standards.", "I am hardly ever satisfied with my performance." ) ) # save the updated unified database boilerplate_save(unified_db) # define parameters study_params <- list( exposure_var = "perfectionism", population = "New Zealand Residents Enroled in Electoral Roll in 2021", timeframe = "2021-2025", sampling_method = "convenience" ) # generate methods text for participant selection sample_text <- boilerplate_generate_text( category = "methods", sections = c("sample_selection"), global_vars = study_params, add_headings = TRUE, heading_level = "###", db = unified_db ) cat(sample_text) # generate measures text for exposure variable exposure_text <- boilerplate_generate_measures( variable_heading = "Exposure Variable", variables = "perfectionism", heading_level = 3, subheading_level = 4, print_waves = TRUE, db = unified_db ) cat(exposure_text)
To cite the boilerplate package in publications, please use:
Bulbulia, J. (2025). boilerplate: Tools for Managing and Generating Standardised Text for Scientific Reports. R package version 1.2.0 https://doi.org/10.5281/zenodo.13370825
A BibTeX entry for LaTeX users:
@software{bulbulia_boilerplate_2025,
author = {Bulbulia, Joseph},
title = {{boilerplate: Tools for Managing and Generating
Standardised Text for Scientific Reports}},
year = 2025,
publisher = {Zenodo},
version = {1.3.0},
doi = {10.5281/zenodo.13370825},
url = {https://github.com/go-bayes/boilerplate}
}
MIT © Joseph Bulbulia
For specific workflows: - JSON support: See vignette("boilerplate-json-workflow")
- Quarto integration: See vignette("boilerplate-quarto-workflow")
- Getting started: See vignette("boilerplate-intro")
d ### Example Files
The package includes example files in the inst/
directory: - Quarto example: system.file("examples", "minimal-quarto-example.qmd", package = "boilerplate")
- JSON workflows: See files in system.file("examples/json-examples", package = "boilerplate")
- Example data: CSV and JSON examples in system.file("extdata", package = "boilerplate")
The boilerplate
package is remains under active development.
Roadmap:
Enhanced Documentation and Examples (v1.3.1) - comprehensive example testing framework - Enhanced vignette coverage for all workflows - Improved error messages with helpful suggestions
Enhanced Type Safety (v1.4.x) - implement S3 classes for all database objects - Custom print methods
Modern R Infrastructure (v2.0) - migrate to S7 object system (once stable)
###Design Principles
Our development follows these principles: - Backward compatibility: No breaking changes without major version bump - User-first design: Features driven by real research needs - Type safety: progressive enhancement of type checking
We welcome feedback and contributions! Please see our contribution guidelines for more information.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4