A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/facebookresearch/eft below:

facebookresearch/eft: visualization code for 3D human body annotation by EFT (Exemplar Fine-tuning)

This repository contains pseudo-GT 3D human pose data produced by Exemplar Fine-Tuning (EFT) method, published in 3DV 2021. The 3D pose data is in the form of SMPL parameters, and this can be used as a supervision to train a 3D pose estimation algiritm (e.g., SPIN or HMR). We found that our EFT dataset is sufficient to build a model that is comparable to the previous SOTA algorithms without using any other indoor 3D pose dataset. See our paper for more details.

This repository also contains the pre-trained 3D pose estimation model trained with our EFT dataset and monocular motion capture demo tools. See README_bodymocap.

It is convenient and safe to use conda environment

conda create -n venv_eft python=3.6
conda activate venv_eft
pip install -r requirements.txt
Download EFT Fitting data (json formats)

This repository only provides corresponding SMPL parameters for public 2D keypoint datasets (such as COCO, MPII). You need to download images from the original dataset website.

Run the following script to download our EFT fitting data:

sh scripts/download_eft.sh 
Dataset Name SampleNum Manual Filtering File Name COCO2014-12kp 28344 No COCO2014-Part-ver01.json COCO2014-6kp 79051 No COCO2014-All-ver01.json COCO2014-Val 10510 Yes COCO2014-Val-ver10.json MPII 14361 No MPII_ver01.json PoseTrack 28856 No PoseTrack_ver01.json LSPet-Train 2946 Yes LSPet_ver01.json LSPet-Test 2433 Yes LSPet_test_ver10.json OCHuman-Train 2495 Yes OCHuman_train_ver10.json OCHuman-Test 1783 Yes OCHuman_test_ver10.json Download Other Required Data Download Images from Original Public DB website Visualize EFT Fitting Results Run EFT Fitting by yourself
@inproceedings{joo2020eft,
  title={Exemplar Fine-Tuning for 3D Human Pose Fitting Towards In-the-Wild 3D Human Pose Estimation},
  author={Joo, Hanbyul and Neverova, Natalia and Vedaldi, Andrea},
  booktitle={3DV},
  year={2020}
}

CC-BY-NC 4.0. See the LICENSE file.

The body mocap code is a modified version of SPIN, and the majority of this code is borrowed from it.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4