A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://github.com/eric612/MobileNet-SSD-windows below:

GitHub - eric612/MobileNet-SSD-windows

**This is an experimental, fixed some bugs from https://github.com/runhang/caffe-ssd-windows and I add following items into project

  1. Support MobileNetV2 (source from MobileNetv2-SSDLite )
  2. Support yolov2 loss layer (source from my git caffe-yolov2-windows)
  3. Rplace group convolution layer from depthwise layer , speed 4x up faster with group convolution

MobileNet-SSD-linux

We assume that cmake.exe and python.exe are on your PATH.

Configuring and Building Caffe (CPU Only)

Create a python2.7 env from Anaconda and activate

> cd $caffe_root/script
> build_win.cmd

Edit build_win.cmd and set varible MSVC_VERSION=12

config build_win.cmd and set CPU_Only flag to 0

Download SSD_300x300 deploy model and save at

$caffe_root\models\VGGNet\VOC0712\SSD_300x300\

Download deploy weights from original web and save at

$caffe_root\models\MobileNet\

> cd $caffe_root/
> dectect.cmd
> cd $caffe_root
> python examples\ssd\test_ssd.py data\VOC0712\000166.jpg models\MobileNet\MobileNetSSD_deploy.prototxt models\MobileNet\MobileNetSSD_deploy.caffemodel

If load success , you can see the image window like this

Set detect.cmd varible "detector" (0,1) to switch VGG or MobileNet

Download lmdb

Unzip into $caffe_root/

Please check the path exist "$caffe_root\examples\VOC0712\VOC0712_trainval_lmdb"

Download SSD_300x300 pretrain weights and save at

$caffe_root\models\VGGNet\

> cd $caffe_root/
> train.cmd
Trainning Mobilenet_V1_SSD

Download pre-train weights from original web and save at

$caffe_root\models\MobileNet\

> cd $caffe_root/
> train_mobilenet.cmd
Trainning Mobilenet_V2_SSD
> cd $caffe_root/
> train_mobilenet_v2.cmd
Trainning MobilenetYOLO_V2
> cd $caffe_root/
> train_yolo.cmd
Trainning own dataset and deploy MobilentSSD_V1

follow this project step

> cd $caffe_root/
> demo_yolo.cmd

> cd $caffe_root/
> demo.cmd or demov2.cmd (MobilenetSSD_V2)

> cd $caffe_root/
> demo_webcam.cmd
char* CLASSES2[6] = { "__background__","bicycle", "car", "motorbike", "person","cones" };
Model and Weights MobilnetSSD_V1

weights

model

Vehicle detection using MobilnetSSD_V2
> cd $caffe_root/
> demo.cmd or demov2_custom.cmd 
Demo Video MobilnetSSD_V1

Demo Video MobilnetSSD_V2

Demo Video MobilenetYOLO_V2
> cd $caffe_root/
> demo_yolo_custom.cmd

Labeling tool with MobileNet-SSD

AutoLabelImg


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4