This repository is largely taken from nixpkgs/lib. This library is meant to serve as the basis of a poly-repo nixpkgs fork or for standalone use in a flake which doesn't need all of nixpkgs.
Noteable exceptions from nixpkgs/lib
:
systems/
was removed as it included information about system platforms which are not relevant to nix utilities.maintainers
and teams
were removed, as that's related to package maintainershippackageSets.mkAutoCalledPackageDir
lib, which enables the easy creation package sets from a directorylib.trivial
no longer includes nixpkgs release related informationThis directory contains the implementation, documentation and tests for the Nixpkgs lib
library.
The evaluation entry point for lib
is default.nix
. This file evaluates to an attribute set containing two separate kinds of attributes:
Sub-libraries: Attribute sets grouping together similar functionality. Each sub-library is defined in a separate file usually matching its attribute name.
Example: lib.lists
is a sub-library containing list-related functionality such as lib.lists.take
and lib.lists.imap0
. These are defined in the file lists.nix
.
Aliases: Attributes that point to an attribute of the same name in some sub-library.
Example: lib.take
is an alias for lib.lists.take
.
Most files in this directory are definitions of sub-libraries, but there are a few others:
minver.nix
: A string of the minimum version of Nix that is required to evaluate Nixpkgs.tests
: Tests, see Running tests
release.nix
: A derivation aggregating all testsmisc.nix
: Evaluation unit tests for most sub-libraries*.sh
: Bash scripts that run tests for specific sub-librariessystems
: The lib.systems
sub-library, structured into a directory instead of a file due to its complexitypath
: The lib.path
sub-library, which includes tests as well as a document describing the design goals of lib.path
The module system spans multiple sub-libraries:
modules.nix
: lib.modules
for the core functions and anything not relating to option definitionsoptions.nix
: lib.options
for anything relating to option definitionstypes.nix
: lib.types
for module system typesFollow these guidelines for proposing a change to the interface of lib
.
Clearly describe why the change is necessary and its use cases.
Make sure that the change benefits the user more than the added mental effort of looking it up and keeping track of its definition. If the same can reasonably be done with the existing interface, consider just updating the documentation with more examples and links. This is also known as the Fairbairn Threshold.
Through this principle we avoid the human cost of duplicated functionality in an overly large library.
Make one PR for each changeDon't have multiple changes in one PR, instead split it up into multiple ones.
This keeps the conversation focused and has a higher chance of getting merged.
Name the interface appropriatelyWhen introducing new names to the interface, such as new function, or new function attributes, make sure to name it appropriately.
Names should be self-explanatory and consistent with the rest of lib
. If there's no obvious best name, include the alternatives you considered.
Update the reference documentation to reflect the change.
Be generous with links to related functionality.
Add good test coverage for the change, including:
Tests for edge cases, such as empty values or lists.
Tests for tricky inputs, such as a string with string context or a path that doesn't exist.
Test all code paths, such as if-then-else
branches and returned attributes.
If the tests for the sub-library are written in bash, test messages of custom errors, such as throw
or abortMsg
,
At the time this is only not necessary for sub-libraries tested with tests/misc.nix
.
See running tests for more details on the test suites.
Name variables well, even if they're internal. The code should be as self-explanatory as possible. Be generous with code comments when appropriate.
As a baseline, follow the Nixpkgs code conventions.
Nix generally does not have free abstractions. Be aware that seemingly straightforward changes can cause more allocations and a decrease in performance. That said, don't optimise prematurely, especially in new code.
Reference documentation for library functions is written above each function as a multi-line comment. These comments are processed using nixdoc and rendered in the Nixpkgs manual. The nixdoc README describes the comment format.
See doc/README.md for how to build the manual.
All library tests can be run by building the derivation in tests/release.nix
:
nix-build tests/release.nix
Some commands for quicker iteration over parts of the test suite are also available:
# Run all evaluation unit tests in tests/misc.nix # if the resulting list is empty, all tests passed nix-instantiate --eval --strict tests/misc.nix # Run the module system tests tests/modules.sh # Run the lib.sources tests tests/sources.sh # Run the lib.filesystem tests tests/filesystem.sh # Run the lib.path property tests path/tests/prop.sh # Run the lib.fileset tests fileset/tests.sh
Make sure you read about the commit conventions common to Nixpkgs as a whole.
Format the commit messages in the following way:
(section): (init | add additional argument | refactor | etc)
(Motivation for change. Additional information.)
Examples:
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4